首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Constructing a solid electrolyte interface (SEI) is a highly effective approach to overcome the poor reversibility of lithium (Li) metal anodes. Herein, an adhesive and self‐healable supramolecular copolymer, comprising of pendant poly(ethylene oxide) (PEO) segments and ureido‐pyrimidinone (UPy) quadruple‐hydrogen‐bonding moieties, is developed as a protection layer of Li anode by a simple drop‐coating. The protection performance of in‐situ‐formed LiPEO–UPy SEI layer is significantly enhanced owing to the strong binding and improved stability arising from a spontaneous reaction between UPy groups and Li metal. An ultrathin (approximately 70 nm) LiPEO–UPy layer can contribute to stable and dendrite‐free cycling at a high areal capacity of 10 mAh cm?2 at 5 mA cm?2 for 1000 h. This coating together with the promising electrochemical performance offers a new strategy for the development of dendrite‐free metal anodes.  相似文献   

2.
主链含四重氢键基元聚氨酯的合成与性能   总被引:1,自引:0,他引:1  
合成了一种新型含有UPy(2-ureido-4[1H]-pyrimidone)基团的二羟基化合物,以此二羟基化合物作扩链剂,通过与聚氨酯预聚体进行的扩链反应,制备了一系列主链含UPy的聚氨酯(PU-UPy).傅里叶红外光谱(FTIR)、氢核磁共振(1H-NMR)等测试结果表明,在聚氨酯主链中确实含有UPy链段.同时,热性能及力学性能测试表明,聚氨酯中的UPy二聚体会集聚而形成微晶,熔点在60℃附近.在聚氨酯主链中引入UPy,能大幅提高聚氨酯的力学性能,调整软段的分子量,以及在主链中UPy含量可改变聚氨酯弹性体的断裂伸长率和抗张强度.  相似文献   

3.
Graphene quantum dot (GQD)–organic hybrid compounds (GQD‐ 2 b – e ) were prepared by introducing 3,4,5‐tri(hexadecyloxy)benzyl groups (C16) and linear chains terminated with a 2‐ureido‐4‐[1H]‐pyrimidinone (UPy) moiety onto the periphery of GQD‐ 1 . GQD‐ 2 b – e formed supramolecular assemblies through hydrogen bonding between the UPy units. GPC analysis showed that GQDs with high loadings of the UPy group formed larger assemblies, and this trend was confirmed by DOSY and viscosity measurements. AFM images showed the polymeric network structures of GQD‐ 2 e on mica with flat structures (ca. 1.1 nm in height), but no such structures were observed in GQD‐ 2 a , which only carries the C16 group. GQD‐ 2 c and GQD‐ 2 d formed organogels in n‐decanol, and the gelation properties can be altered by replacing the alkyl chains in the UPy group with ethylene glycol chains (GQD‐ 3 ). GQD can thus be used as a platform for supramolecular polymers and organogelators by suitable chemical functionalization.  相似文献   

4.
A series of self‐complementary ureido pyrimidinedione (UPy) derivatives modified with different aurophilic anchoring groups were synthesized. Their electron transport properties through the quadruple hydrogen bonds in apolar solvent were probed employing the scanning tunneling microscopy break junction (STMBJ) technique. The molecule terminated with a thiol shows the optimal electron transport properties, with a statistical conductance value that approaches 10?3 G0. The 1H NMR spectra and control experiments verify the formation of quadruple hydrogen bonds, which can be effectively modulated by the polarity of the solvent environment. These findings provide a new design strategy for supramolecular circuit elements in molecular electronics.  相似文献   

5.
Constructing a solid electrolyte interface (SEI) is a highly effective approach to overcome the poor reversibility of lithium (Li) metal anodes. Herein, an adhesive and self-healable supramolecular copolymer, comprising of pendant poly(ethylene oxide) (PEO) segments and ureido-pyrimidinone (UPy) quadruple-hydrogen-bonding moieties, is developed as a protection layer of Li anode by a simple drop-coating. The protection performance of in-situ-formed LiPEO–UPy SEI layer is significantly enhanced owing to the strong binding and improved stability arising from a spontaneous reaction between UPy groups and Li metal. An ultrathin (approximately 70 nm) LiPEO–UPy layer can contribute to stable and dendrite-free cycling at a high areal capacity of 10 mAh cm−2 at 5 mA cm−2 for 1000 h. This coating together with the promising electrochemical performance offers a new strategy for the development of dendrite-free metal anodes.  相似文献   

6.
One of the major challenges in the processing of hydrogels based on poly(ethylene glycol) (PEG) is to create mechanically robust electrospun hydrogel scaffolds without chemical crosslinking postprocessing. In this study, this is achieved by the introduction of physical crosslinks in the form of supramolecular hydrogen bonding ureido‐pyrimidinone (UPy) moieties, resulting in chain‐extended UPy‐PEG polymers (CE‐UPy‐PEG) that can be electrospun from organic solvent. The resultant fibrous meshes are swollen in contact with water and form mechanically stable, elastic hydrogels, while the fibrous morphology remains intact. Mixing up to 30 wt% gelatin with these CE‐UPy‐PEG polymers introduce bioactivity into these scaffolds, without affecting the mechanical properties. Manipulating the electrospinning parameters results in meshes with either small or large fiber diameters, i.e., 0.63 ± 0.36 and 2.14 ± 0.63 µm, respectively. In that order, these meshes provide support for renal epithelial monolayer formation or a niche for the culture of cardiac progenitor cells.  相似文献   

7.
Even though nanocomposites have provided a plethora of routes to increase stiffness and strength, achieving increased toughness with suppressed catastrophic crack growth has remained more challenging. Inspired by the concepts of mechanically excellent natural nanomaterials, one‐component nanocomposites were fabricated involving reinforcing colloidal nanorod cores with polymeric grafts containing supramolecular binding units. The concept is based on mechanically strong native cellulose nanocrystals (CNC) grafted with glassy polymethacrylate polymers, with side chains that contain 2‐ureido‐4[1H]‐pyrimidone (UPy) pendant groups. The interdigitation of the grafts and the ensuing UPy hydrogen bonds bind the nanocomposite network together. Under stress, UPy groups act as sacrificial bonds: simultaneously providing adhesion between the CNCs while allowing them to first orient and then gradually slide past each other, thus dissipating fracture energy. We propose that this architecture involving supramolecular binding units within side chains of polymer grafts attached to colloidal reinforcements opens generic approaches for tough nanocomposites.  相似文献   

8.
In studies of a supramolecular network of polymers formed by self-association of UPy or UG recognition units displayed along a poly(butyl methacrylate) (PBMA) backbone, it was unexpectedly found that the more weakly dimerizing (Kdimer approximately 200 M-1) UG unit produced more assembly than did the very strongly dimerizing UPy unit (Kdimer = 2 x 107 M-1). Likewise, in examining supramolecular blends mediated by the heterocomplexation of DAN and UPy, which occurs upon the mixing of polystyrene containing the DAN unit (PS-DAN) and PBMA-UPy, increasing the mol % of UPy did not produce increased viscosity. 1H NMR showed that both observations can be explained by the intramolecular recognition of UPy. Structural studies show that the length of the chain linking the UPy unit to the backbone is critical, with longer linkers favoring intermolecular dimers. An interplay of linker chain length, polymer Mw, recognition unit mol %, and fidelity determines the extent of network growth.  相似文献   

9.
Induction of a functional, tight monolayer of renal epithelial cells on a synthetic membrane to be applied in a bioartificial kidney device requires for bio‐activation of the membrane. The current golden standard in bio‐activation is the combination of a random polymeric catechol (L‐DOPA) coating and collagen type IV (Col IV). Here the possibility of replacing this with defined monomeric catechol functionalization on a biomaterial surface using supramolecular ureido‐pyrimidinone (UPy)‐moieties is investigated. Monomeric catechols modified with a UPy‐unit are successfully incorporated and presented in supramolecular UPy‐polymer films and membranes. Unfortunately, these UPy‐catechols are unable to improve epithelial cell monolayer formation over time, solely or in combination with Col IV. L‐DOPA combined with Col IV is able to induce a tight monolayer capable of transport on electrospun supramolecular UPy‐membranes. This study shows that a random polymeric catechol coating cannot be simply mimicked by defined monomeric catechols as supramolecular additives. There is still a long way to go in order to synthetically mimic simple natural structures.  相似文献   

10.
Developing new photoswitchable noncovalent interaction motifs with controllable bonding affinity is crucial for the construction of photoresponsive supramolecular systems and materials. Here we describe a unique “photolocking” strategy for realizing photoswitchable control of quadruple hydrogen-bonding interactions on the basis of modifying the ureidopyrimidinone (UPy) module with an ortho-ester substituted azobenzene unit as the “photo-lock”. Upon light irradiation, the obtained Azo-UPy motif is capable of unlocking/locking the partial H-bonding sites of the UPy unit, leading to photoswitching between homo- and heteroquadruple hydrogen-bonded dimers, which has been further applied for the fabrication of novel tunable hydrogen bonded supramolecular systems. This “photolocking” strategy appears to be broadly applicable in the rational design and construction of other H-bonding motifs with sufficiently photoswitchable noncovalent interactions.

A photolocking strategy is described to achieve the construction of effectively photoswitchable quadruple hydrogen bonds featuring with photoregulable H-bonding affinities, which is further applied in the photocontrollable H-bonded self-assemblies.  相似文献   

11.
A set of fluorene oligomers has been synthesized by stepwise palladium-catalyzed (Suzuki) couplings of fluorene monomers. Ureidopyrimidinones (UPy), functional groups that can dimerize via quadruple hydrogen bonds, were attached to both ends of the oligofluorenes. The resulting bis-UPy-terminated oligomers self-assemble into supramolecular chain polymers. For comparison, oligofluorenes of the same oligomer lengths but without terminal hydrogen-bonding groups were synthesized. Chains of hydrogen-bonded fluorenes can be simply endcapped by a variety of chain stoppers, molecules that have one UPy group. In this manner, we have endcapped the hydrogen-bonded fluorene chains with either oligo(p-phenylenevinylene) or perylene bisimide. Energy-transfer experiments in solution and the solid state demonstrate that oligofluorenes can donate energy to a variety of energy acceptors, but that this energy transfer occurs most effectively when the donor fluorene is hydrogen-bonded to the acceptor.  相似文献   

12.
An 2‐ureido‐4[1H]pyrimidinone (UPy) motif with self‐association capability (through quadruple hydrogen bonds) was successfully anchored onto montmorillonite clay layers. Polymer/clay nanocomposites were prepared by specific hydrogen bonding interactions between surface functionalized silica nanoclays and UPy‐bonded supramolecular poly(ethylene glycol) or poly(?‐caprolactone). The mixed morphologies including intercalated layers with a non‐uniform separation and exfoliated single layers isolated from any stack were determined by combined X‐ray diffraction and transmission electron microscopic measurements. Thermal analyses showed that all nanocomposites had higher decomposition temperatures and thermal stabilities compared with neat polymer. The differential scanning calorimetric data implied that the crystallinity of polymers did not show essential changes upon introduction of organomodified UPy clays. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 650–658  相似文献   

13.
The article discusses the development and properties of supramolecular polymers based on quadruple hydrogen bonds between self‐complementary ureidotriazine (UTr) and ureidopyrimidinone (UPy) functional groups. The high association constant with which these groups dimerize leads to polymers with a high degree of polymerization in isotropic solution. Application of these units for the functionalization of telechelic polymers results in new materials with mechanical properties approaching those of covalent polymers, but with a much stronger temperature‐dependent behavior. Solvophobic interactions between the hydrogen bonding moieties may be used to obtain supramolecular polymers with a well defined helical columnar architecture. Another consequence of the high dimerization constant of the UPy group is the phenomenon of a critical concentration in solutions of many bifunctional monomers. Below this concentration, only cycles are present, while above the critical concentration, the amount of cycles remains constant, and a polymer is formed. Conformational properties of the linker units are used to control the equilibrium between polymers and cycles, and are proposed to form a promising strategy toward tunable materials.

Supramolecular polymer material with elastomeric properties resulting from functionalization with UPy groups. (Reproduced with permission. © John Wiley & Sons, Inc.)  相似文献   


14.
The most basic function of synthetic microenvironments for tissue engineering is to act as a physical substrate for cell attachment, migration, and proliferation, similar to the natural cell environment. Functionalization of supramolecular materials with guest compounds that display the same recognition moieties is a common strategy to introduce biofunctionality. However, besides a robust interaction with the material, a certain level of dynamics needs to be conserved for an adaptive interface toward the living environment. A balance between robust material functionalization and dynamic cell interaction needs to be met. The detailed analysis hereof using a ureido‐pyrimidinone (UPy) poly(ethylene glycol) system in dilute and transient network regime is demonstrated. Monovalent and bivalent UPy‐functionalized guest molecules are designed and their interaction with UPy‐host fibers is evaluated. Analysis of guest interaction in the dilute state by microfluidics, and in the gel state, by fluorescence recovery after photobleaching and fluorescence resonance energy transfer is proven to be suitable to quantify the local and ensemble guest mobility. The results demonstrate that the interaction of bioactive moieties through supramolecular host–guest chemistry yields a dynamic system, which is stronger for divalent guests but risks unintended leakage in the case of functional monomeric units.  相似文献   

15.
《高分子科学》2019,37(12):1257-1266
A well-defined quadruple hydrogen bonding strategy involving dimerization of 2-ureido-4[1H]-pyrimidone(UPy) units is innovatively designed to prepare polyureas with high overall mechanical properties. Three polyureas containing different amounts of UPy units were synthesized by replacing a portion of isophorone diisocyanate(IPDI) with a UPy-derived diisocyanate. The formation of quadruple hydrogen bonds in hard segments via UPy dimers was confirmed by nuclear magnetic resonance(NMR) and Fourier transform infrared spectroscopy(FTIR). The mechanical properties of the polyureas were evaluated by uniaxial tensile testing. Compared to the polyurea without UPy units, remarkable improvements in Young's modulus, tensile strength, and toughness were simultaneously achieved when UPy units were incorporated. The mechanism behind the strong strengthening effect rooted in the stronger intermolecular forces among hard segments brought by the quadruple hydrogen bonds, which were stronger than the inherent bidentate and monodentate hydrogen bonds among urea groups, and the slower soft segmental dynamics reaveled by both increased Tg and relaxation time of the soft segments. The mechanism behind the strong toughening effect was ascribed to more effective energy dissipation brought by the quadruple hydrogen bonds that served as stronger sacrificial bonds upon deformation. This work may offer new insight into the design of polyurea elastomers with comprehensively improved mechanical properties.  相似文献   

16.
谢众  魏浩 《高分子科学》2016,34(7):850-857
A bisphenol A based epoxy was incorporated with a quadruply hydrogen bonded supramolecular polymer as a toughening agent to prepare a composite epoxy resin with higher impact resistance. The supramolecular polymer comprising poly-(propylene glycol) bis(2-aminopropyl) ether chains and 2-ureido-4[1H]-pyrimidinone moieties (UPy) self-assembled into spherical domains with sizes of 300 nm to 600 nm in diameter by micro phase separation in bulk epoxy matrixes. A significant improvement of 300% in impact resistance of the supramolecular polymer incorporated epoxy resin was obtained when the content of supramolecular polymer was 10 wt%. Tensile tests showed that the mechanical properties of the modified epoxy resin containing the hydrogen-bonded supramolecular polymers are also improved compared with those of the neat epoxy resin.  相似文献   

17.
Biomaterials based on non‐active polymers functionalized with antimicrobial agents by covalent modification or mixing are currently regarded as high potential solutions to prevent biomaterial associated infections that are major causes of biomedical device failure. Herewith a strategy is proposed in which antimicrobial materials are prepared by simply mixing‐and‐matching of ureido‐pyrimidinone (UPy) based supramolecular polymers with antimicrobial peptides (AMPs) modified with the same UPy‐moiety. The N‐terminus of the AMPs was coupled in solution to an UPy‐carboxylic acid synthon resulting in formation of a new amidic bond. The UPy‐functionalization of the AMPs did not affect their secondary structure, as proved by circular dichroism spectroscopy. The antimicrobial activity of the UPy‐AMPs in solution was also retained. In addition, the incorporation of UPy‐AMPs into an UPy‐polymer was stable and the final material was biocompatible. The addition of 4 mol % of UPy‐AMPs in the UPy‐polymer material protected against colonization by Escherichia coli, and methicillin‐sensitive and ‐resistant strains of Staphylococcus aureus. This modular approach enables a stable but dynamic incorporation of the antimicrobial agents, allowing at the same time for the possibility to change the nature of the polymer, as well as the use of AMPs with different activity spectra. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1926–1934  相似文献   

18.
Cell‐free approaches to in situ tissue engineering require materials that are mechanically stable and are able to control cell‐adhesive behavior upon implantation. Here, the development of mechanically stable grafts with non‐cell adhesive properties via a mix‐and‐match approach using ureido‐pyrimidinone (UPy)‐modified supramolecular polymers is reported. Cell adhesion is prevented in vitro through mixing of end‐functionalized or chain‐extended UPy‐polycaprolactone (UPy‐PCL or CE‐UPy‐PCL, respectively) with end‐functionalized UPy‐poly(ethylene glycol) (UPy‐PEG) at a ratio of 90:10. Further characterization reveals intimate mixing behavior of UPy‐PCL with UPy‐PEG, but poor mechanical properties, whereas CE‐UPy‐PCL scaffolds are mechanically stable. As a proof‐of‐concept for the use of non‐cell adhesive supramolecular materials in vivo, electrospun vascular scaffolds are applied in an aortic interposition rat model, showing reduced cell infiltration in the presence of only 10% of UPy‐PEG. Together, these results provide the first steps toward advanced supramolecular biomaterials for in situ vascular tissue engineering with control over selective cell capturing.

  相似文献   


19.
Functionalization of polydimethylsiloxanes (PDMS) polymers with hydrogen‐bonding ureidopyrimidinone (UPy) groups leads to supramolecular thermoplastic elastomers. In previous studies, no lateral stacking of UPy dimers was observed in UPy‐functionalized polymers, unless additional urethane or urea groups were built into the hard block. However, we have shown that when PDMS is used as the soft block, this lateral aggregation of UPy dimers does take place, since long fibers could be observed in the atomic force microscopy (AFM) phase image. Also in bulk, the presence of these interactions was proven by oscillatory shear experiments. We attribute this aggregation to the incompatibility of soft block and hard block, leading to phase separation. Moreover, we have shown that additional urethane or urea groups in the hard block do lead to materials with more fibers and higher melting points. For the UPy‐urea functionalized PDMS even single fibers are observed with AFM when dropcasted from a very diluted solution. When the length of the soft block is increased, the morphology changes from fibrous to spherical. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3877–3885, 2008  相似文献   

20.
We report on the application of the time-temperature superposition principle to supramolecular bond-rupture forces on the single-molecule level. The construction of force-loading rate master curves using atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) experiments carried out in situ at different temperatures allows one to extend the limited range of the experimentally accessible loading rates and hence to cross from thermodynamic nonequilibrium to quasi-equilibrium states. The approach is demonstrated for quadruple H-bonded ureido-4[1H]-pyrimidinone (UPy) moieties studied by variable-temperature SMFS in organic media. The unbinding forces of single quadruple H-bonding (UPy)2 complexes, which were identified based on a polymeric spacer strategy, were found to depend on the loading rate in the range of 5 nN/s to 500 nN/s at 301 K in hexadecane. By contrast, these rupture forces were independent of the loading rate from 5 to 200 nN/s at 330 K. These results indicate that the unbinding behavior of individual supramolecular complexes can be directly probed under both thermodynamic nonequilibrium and quasi-equilibrium conditions. On the basis of the time-temperature superposition principle, a master curve was constructed for a reference temperature of 301 K, and the crossover force (from loading-rate independent to -dependent regimes) was determined as approximately 145 pN (at a loading rate of approximately 5.6 nN/s). This approach significantly broadens the accessible loading-rate range and hence provides access to fine details of potential energy landscape of supramolecular complexes based on SMFS experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号