首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we have proposed an upper bound for the largest Z-eigenvalue of an irreducible weakly symmetric and nonnegative tensor, which is called the Brauer upper bound:■where■ As applications, a bound on the Z-spectral radius of uniform hypergraphs is presented.  相似文献   

2.
设{X_(ni):1≤i≤n,n≥1}为行间NA阵列,g(x)是R~+上指数为α的正则变化函数,r>0,m为正整数,{a_(ni):1≤i≤n,n≥1}为满足条件(?)|a_(ni)|=O((g(n))~1)的实数阵列,本文得到了使sum from n=1 to ∞n~(r-1)Pr(|■multiply from j=1 to m a_(nij) X_(nij)|>ε)<∞,■ε>0成立的条件,推广并改进了Stout及王岳宝和苏淳等的结论。  相似文献   

3.
Sufficient conditions are derived for the existence of a globally attractive almost periodic solution of a competition system modelled by the nonautonomous Lotka–Volterra delay differential equations $$\begin{gathered} \frac{{{\text{d}}N_1 (t)}}{{{\text{d}}t}} = N_1 (t)\left[ {r_1 (t) - a_{11} (t)N_1 (t - \tau (t)) - a_{12} (t)N_2 (t - \tau (t))} \right], \hfill \\ \frac{{{\text{d}}N_2 (t)}}{{{\text{d}}t}} = N_2 (t)\left[ {r_2 (t) - a_{21} (t)N_1 (t - \tau (t)) - a_{22} (t)N_2 (t - \tau (t))} \right], \hfill \\ \end{gathered} $$ in which $ \tau ,r_i ,a_{ij} (i,j = 1,2) $ are continuous positive almost periodic functions; conditions are also obtained for all positive solutions of the above system to 'oscillate' about the unique almost periodic solution. Some ecobiological consequences of the convergence to almost periodicity and delay induced oscillations are briefly discussed.  相似文献   

4.
The goal of the present paper is to investigate some new stability results by applying the alternative fixed point of generalized quadratic functional equation $$\begin{array}{ll}f\left(\sum\limits_{i=1}^{n}a_ix_i\right)+{\sum\limits_{i=1}^{n-1}}{\sum\limits_{j=i+1}^{n}}\left[f(a_ix_i+a_jx_j)+2f(a_ix_i-a_jx_j)\right]\\ \qquad \quad = (3n-2){\sum\limits_{i=1}^{n}}a^2_{i}f(x_{i})\end{array}$$ in β–Banach modules on Banach algebras, where ${a_{1},\dots,a_{n}\in \mathbb{Z}{\setminus}\{0\}}$ and some ${\ell\in\{1 , 2 ,\dots, n-1\},}$ a ? ?≠ ±1 and a n ?=?1, where n is a positive integer greater or at least equal to two.  相似文献   

5.
The Ramanujan Journal - Let $$f(z)=\sum _{n=0}^{\infty }a_{n}{\mathbf {e}}(nz),g(z)=\sum _{n=0}^{\infty }b_{n}{\mathbf {e}}(nz)\ ({\mathbf {e}}(z)=e^{2\pi \sqrt{-1}z})$$ be holomorphic modular...  相似文献   

6.
The solution u of the well-posed problem
depends continuously on (a ij ,β,γ,q). Dedicated to Karl H. Hofmann on his 75th birthday.  相似文献   

7.
We consider the properties on solutions of some q-difference equations of the form ∑ n j=0 aj(z)f(qj z)=an+1(z), where a0(z),..., an+1(z) are meromorphic functions, a0(z)an(z) ≠ 0 and q ∈ C such that 0 〈 |q| ≤ 1. We give estimates on the upper bound for the length of the gap in the power series of entire solutions of (*) when the coefficients a0(z),..., an+1(z) are polynomials and 0 〈 |q| 〈 1. For some special cases, we give estimates of growth of f(z). And we also show that the case 0 〈 |q| 〈 1 is different from the case |q|=1.  相似文献   

8.
As a consequence of a more general statement proved in the paper, it is deduced that, if , and , then

with equality if and only if . This is a new refinement of Carleman's classic inequality.

  相似文献   


9.
By means of the supersolution and subsolution method and monotone iteration technique, the following nonlinear elliptic boundary problem with the nonlocal boundary conditions is considerd. The sufficient conditions which ensure at least one solution are given. Furthermore, the estimate of the first nonzero eigenvalue for the following linear eigenproblem is obtained, that is λ_1≥2α/(nd~2).  相似文献   

10.
In this paper the author considers the following nonlinear boundary value problem with nonlocal boundary conditions $[\left\{ \begin{array}{l} Lu \equiv - \sum\limits_{i,j = 1}^n {\frac{\partial }{{\partial {x_i}}}({a_{ij}}(x)\frac{{\partial u}}{{\partial {x_j}}}) = f(x,u,t)} \u{|_\Gamma } = const, - \int_\Gamma {\sum\limits_{i,j = 1}^n {{a_{ij}}\frac{{\partial u}}{{\partial {x_j}}}\cos (n,{x_i})ds = 0} } \end{array} \right.\]$ Under suitable assumptions on f it is proved that there exists $t_0\in R,-\infinityt_0, at least one solution at t=t_0 at least two solutions as t相似文献   

11.
在有界星形圆形域上定义了一个新的星形映射子族, 它包含了$\alpha$阶星形映射族和$\alpha$阶强星形映射族作为两个特殊子类. 给出了此类星形映射子族的增长定理和掩盖定理. 另外, 还证明了Reinhardt域$\Omega_{n,p_{2},\cdots,p_{n}}$上此星形映射子族在Roper-Suffridge算子 \begin{align*} F(z)=\Big(f(z_{1}),\Big(\frac{f(z_{1})}{z_{1}}\Big)^{\beta_{2}}(f'(z_{1}))^{\gamma_{2}}z_{2},\cdots, \Big(\frac{f(z_{1})}{z_{1}}\Big)^{\beta_{n}}(f'(z_{1}))^{\gamma_{n}}z_{n}\Big)' \end{align*} 作用下保持不变, 其中 $\Omega_{n,p_{2},\cdots,p_{n}}=\{z\in {\mathbb{C}}^{n}:|z_1|^2+|z_2|^{p_2}+\cdots + |z_n|^{p_n}<1\}$, $p_{j}\geq1$, $\beta_{j}\in$ $[0, 1]$, $\gamma_{j}\in[0, \frac{1}{p_{j}}]$满足$\beta_{j}+\gamma_{j}\leq1$, 所取的单值解析分支使得 $\big({\frac{f(z_{1})}{z_{1}}}\big)^{\beta_{j}}\big|_{z_{1}=0}=1$, $(f'(z_{1}))^{\gamma_{j}}\mid_{{z_{1}=0}}=1$, $j=2,\cdots,n$. 这些结果不仅包含了许多已有的结果, 而且得到了新的结论.  相似文献   

12.
The aim of this study is to investigate the existence of infinitely many weak solutions for the $(p(x), q(x))$-Kirchhoff Neumann problem described by the following equation : \begin{equation*} \left\{\begin{array}{ll} -\left(a_{1}+a_{2}\int_{\Omega}\frac{1}{p(x)}|\nabla u|^{p(x)}dx\right)\Delta_{p(\cdot)}u-\left(b_{1}+b_{2}\int_{\Omega}\frac{1}{q(x)}|\nabla u|^{q(x)}dx\right)\Delta_{q(\cdot)}u\+\lambda(x)\Big(|u|^{p(x)-2} u+|u|^{q(x)-2} u\Big)= f_1(x,u)+f_2(x,u) &\mbox{ in } \Omega, \\frac{\partial u}{\partial \nu} =0 \quad &\mbox{on} \quad \partial\Omega.\end{array}\right. \end{equation*} By employing a critical point theorem proposed by B. Ricceri, which stems from a more comprehensive variational principle, we have successfully established the existence of infinitely many weak solutions for the aforementioned problem.  相似文献   

13.
Let M?=?{ 1, 2, . . . ,?n?} and let ${\mathcal {V}=\{\,I \subseteq M: 1 \in I\,\}}$ , where n is an integer greater than 1. Denote ${M{\setminus}{I}}$ by I c for ${I \in \mathcal {V}.}$ We investigate the solution of the following generalized quartic functional equation $$\begin{array}{ll} \sum\limits_{I \in\mathcal {V}}f\, \left({\sum\limits_{i \in I}}a_ix_i-\sum\limits_{i \in I^c}a_ix_i\right) \, = \,2^{n-2} \sum\limits_{1\leq i < j \leq n}a^2_{i}a^2_{j} \left[f(x_{i}+x_{j})+f(x_{i}-x_{j})\right] \\ \qquad \qquad \qquad \quad\quad\quad \quad\quad\quad\quad +\,2^{n-1} \sum\limits^{n}_{i=1}a^2_{i} \left(a^2_{i}-\sum\limits^{n}_{\substack{{j=1}\\{j\neq i}}}a^2_{j}\right)f(x_{i}) \end{array}$$ in β-Banach modules on a Banach algebra, where ${a_{1},\ldots, a_{n}\in \mathbb{Z}{\setminus}\{0\}}$ with a ? ?≠ ±1 for all ${\ell \in \{1 , 2, \ldots ,\,n-1\}}$ and a n ?=?1. Moreover, using the fixed point method, we prove the generalized Hyers–Ulam stability of the above generalized quartic functional equation. Finally, we give an example that the generalized Hyers–Ulam stability does not work.  相似文献   

14.
In this paper, we investigate the Hyers–Ulam stability of the following quartic equation $$\begin{array}{ll} {\sum\limits^{n}_{k=2}}\left({\sum\limits^{k}_{i_{1}=2}}{\sum\limits^{k+1}_{i_{2}=i_{1}+1}} \ldots {\sum\limits^{n}_{i_{n-k+1}=i_{n-k}+1}}\right)\\ \quad\times f \left({\sum\limits^{n}_{i=1,i \neq i_{1},\ldots,i_{n-k+1}}} x_{i}-{\sum\limits^{n-k+1}_{r=1}}x_{i_{r}}\right) + f \left({\sum\limits^{n}_{i=1}}x_{i}\right)\\ \quad-2^{n-2}{\sum\limits^{}_{1 \leq{i} \leq{j} \leq{n}}}(f(x_{i} + x_{j}){+f(x_{i} - x_{j})){+2^{n-5}(n - 2){\sum\limits^{n}_{i=1}}f(2x_{i})}} = \theta \end{array} $$ $({n \in \mathbb{N}, n \geq 3})$ in β-homogeneous F-spaces.  相似文献   

15.
For $N\geq 3$ and non-negative real numbers $a_{ij}$ and $b_{ij}$ ($i,j= 1, \cdots, m$), the semi-linear elliptic system\begin{equation*} \begin{cases}\Delta u_i+\prod\limits_{j=1}^m u_j^{a_{ij}}=0,\text{in}\mathbb{R}_+^N,\\dfrac{\partial u_i}{\partial y_N}=c_i\prod\limits_{j=1}^m u_j^{b_{ij}},\text{on} \partial\mathbb{R}_+^N,\end{cases}\qquad i=1,\cdots,m,\end{equation*} % is considered, where $\mathbb{R}_+^N$ is the upper half of $N$-dimensional Euclidean space. Under suitable assumptions on the exponents $a_{ij}$ and $b_{ij}$, a classification theorem for the positive $C^2(\mathbb{R}_+^N)\cap C^1(\overline{R_+^N})$-solutions of this system is proven.  相似文献   

16.
Periodicity in a Nonlinear Predator-prey System with State Dependent Delays   总被引:1,自引:0,他引:1  
With the help of a continuation theorem based on Gaines and Mawhin's coincidence degree, easily verifiable criteria are established for the global existence of positive periodic solutions of the following nonlinear state dependent delays predator-prey system where a_i(t),c_j(t),d_i(t) are continuous positive periodic functions with periodic ω>0, b_1(t),b_2(t) are continuous periodic functions with periodic ωand ∫_0~ωbi(t)dt>0. T_i,σ_j, p_i (i=1,2,…,n, j=1, 2,…,m) are continuous and ω-periodic with respect to their first arguments, respectively, α_i, β_j,γ_i(i=1,2,…,n, j=1,2, …, m) are positive constants.  相似文献   

17.
Let \(x \in \mathbb {R}^{d}\), d ≥ 3, and \(f: \mathbb {R}^{d} \rightarrow \mathbb {R}\) be a twice differentiable function with all second partial derivatives being continuous. For 1 ≤ i, jd, let \(a_{ij} : \mathbb {R}^{d} \rightarrow \mathbb {R}\) be a differentiable function with all partial derivatives being continuous and bounded. We shall consider the Schrödinger operator associated to
$$\mathcal{L}f(x) = \frac12 \sum\limits_{i=1}^{d} \sum\limits_{j=1}^{d} \frac{\partial}{\partial x_{i}} \left( a_{ij}(\cdot) \frac{\partial f}{\partial x_{j}}\right)(x) + {\int}_{\mathbb{R}^{d}\setminus{\{0\}}} [f(y) - f(x) ]J(x,y)dy $$
where \(J: \mathbb {R}^{d} \times \mathbb {R}^{d} \rightarrow \mathbb {R}\) is a symmetric measurable function. Let \(q: \mathbb {R}^{d} \rightarrow \mathbb {R}.\) We specify assumptions on a, q, and J so that non-negative bounded solutions to
$$\mathcal{L}f + qf = 0 $$
satisfy a Harnack inequality. As tools we also prove a Carleson estimate, a uniform Boundary Harnack Principle and a 3G inequality for solutions to \(\mathcal {L}f = 0.\)
  相似文献   

18.
Methodology and Computing in Applied Probability - The article studies the running maxima $Y_{m,j}=\max_{1 \le k \le m, 1 \le n \le j} X_{k,n} - a_{m,j}$ where {Xk,n,k ≥?1,n...  相似文献   

19.
This paper deals with the following mixed problem for Quasilinear hyperbolic equationsThe M order uniformly valid asymptotic solutions are obtained and there errors areestimated.  相似文献   

20.
A multidimensional continued fraction algorithm is a generalization of the ordinary continued fraction algorithm which approximates a vector η=(y 1,...,y n ) by a sequence of vectors \(\left( {\frac{{a_{j,1} }}{{a_{j,n + 1} }}, \ldots ,\frac{{a_{j,n} }}{{a_{j,n + 1} }}} \right)\) . If 1,y 1,...,y n are linearly independent over the rationals, then we say that the expansion of η isstrongly convergent if $$\mathop {\lim }\limits_{j \to \infty } \left| {\left( {\frac{{a_{j,1} }}{{a_{j,n + 1} }}, \ldots ,\frac{{a_{j,n} }}{{a_{j,n + 1} }}} \right) - \eta } \right| = 0.$$ This means that the algorithm converges at an asymptotically faster rate than would be guaranteed just by picking a denominator at random. The ordinary continued fraction algorithm can be defined using the Farey sequence, approximating a number by the endpoints of intervals which contain it. Analogously, we can define a Farey netF n, m to be a triangulation of the set of all vectors \(\left( {\frac{{a_1 }}{{a_{n + 1} }}, \ldots ,\frac{{a_n }}{{a_{n + 1} }}} \right)\) witha n+1 ≤m into simplices of determinant ±1, and use this algorithm to define a multidimensional continued fraction for η in which the approximations are the vertices of the simplices containing η in a sequence of Farey nets. The concept of a Farey net was proposed by A. Hurwitz, and R. Mönkemeyer developed a specific continued fraction algorithm based on it. We show that Mönkemeyer's algorithm discovers dependencies among the coordinates of η in two dimensions, but that no continued fraction algorithm based on Farey nets can discover dependencies in three or more dimensions, and none can be strongly convergent, even in two dimensions. Thus there are no good multidimensional algorithms based on Farey nets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号