首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 279 毫秒
1.

One of the main concerns during the COVID-19 pandemic was the protection of healthcare workers against the novel coronavirus. The critical role and vulnerability of healthcare workers during the COVID-19 pandemic leads us to derive a mathematical model to express the spread of coronavirus between the healthcare workers. In the first step, the SECIRH model is introduced, and then the mathematical equations are written. The proposed model includes eight state variables, i.e., Susceptible, Exposed, Carrier, Infected, Hospitalized, ICU admitted, Dead, and finally Recovered. In this model, the vaccination, protective equipment, and recruitment policy are considered as preventive actions. The formal confirmed data provided by the Iranian ministry of health is used to simulate the proposed model. The simulation results revealed that the proposed model has a high degree of consistency with the actual COVID-19 daily statistics. In addition, the roles of vaccination, protective equipment, and recruitment policy for the elimination of coronavirus among the healthcare workers are investigated. The results of this research help the policymakers to adopt the best decisions against the spread of coronavirus among healthcare workers.

  相似文献   

2.
Zhang  Mingyue  Guan  Yongliang  Li  Chao  Luo  Sha  Li  Qingdang 《Nonlinear dynamics》2023,111(9):8347-8368

A composite controller based on a backstepping controller with an adaptive fuzzy logic system and a nonlinear disturbance observer is proposed in this paper to address the disturbance and uncertainty issues in the control of the optoelectronic stabilized platform. The matched and unmatched disturbances and system uncertainty are included in the stabilized platform model. The system's uncertainty and disturbance are approximated and estimated using an adaptive fuzzy logic system and a nonlinear disturbance observer. Moreover, the backstepping control algorithm is utilized to control the system. The simulations are performed in four states to confirm the viability of the proposed control technique. The proportional integral controller, proportional integral-disturbance observer controller, and fuzzy backstepping controller are contrasted with the proposed controller. It has been noted that the proposed controller's instantaneous disturbance's highest value is 5.1°/s. The maximal value of the coupling output for the two gimbals utilizing the proposed controller, however, is 0.0008°/s and 0.0018°/s, respectively. The findings presented here demonstrate that the backstepping controller, which is based on an adaptive fuzzy logic system and a nonlinear disturbance observer, is capable of precise tracking and dynamic tracking of a stabilized platform under disturbance and uncertainty.

  相似文献   

3.

The COVID-19 pandemic shows to have a huge impact on people's health and countries' infrastructures around the globe. Iran was one of the first countries that experienced the vast prevalence of the coronavirus outbreak. The Iranian authorities applied various non-pharmaceutical interventions to eradicate the epidemic in different periods. This study aims to investigate the effectiveness of non-pharmaceutical interventions in managing the current Coronavirus pandemic and to predict the next wave of infection in Iran. To achieve the research objective, the number of cases and deaths before and after the interventions was studied and the effective reproduction number of the infection was analyzed under various scenarios. The SEIR generic model was applied to capture the dynamic of the pandemic in Iran. To capture the effects of different interventions, the corresponding reproduction number was considered. Depending on how people are responsive to interventions, the effectiveness of each intervention has been investigated. Results show that the maximum number of the total of infected individuals will occur around the end of May and the start of June 2021. It is concluded that the outbreak could be smoothed if full lockdown and strict quarantine continue. The proposed modeling could be used as an assessment tool to evaluate the effects of different interventions in new outbreaks.

  相似文献   

4.
Epureanu  B. I.  Trickey  S. T.  Dowel  E. H. 《Nonlinear dynamics》1998,15(2):191-205
The underlying geometric structure of the standard OGY control scheme is analyzed. Some of the main mechanisms that under certain conditions lead to failure of the control algorithm are revealed. The limited controllability available in a system is investigated and it is shown that it may lead to serious problems that will significantly enlarge the state space region of failure of the standard OGY controller. A minimal distance algorithm is analyzed and shown to be, for some problems, more advantageous than the standard OGY technique. Nevertheless, for a broad category of problems, the minimal distance scheme is also shown to fail. As a solution for these problems, two new techniques are proposed: the penalized minimal distance and the multi-step OGY-type scheme. The standard OGY and minimal distance algorithms are particular cases of the new techniques proposed. Finally, we give a necessary condition that estimates the region of controllability under the multi-step OGY-type control. We demonstrate a significantly improved basin of convergence for the new multi-step OGY-type algorithm.  相似文献   

5.
Foroutannia  Ali  Ghasemi  Mahdieh 《Nonlinear dynamics》2023,111(9):8713-8736

It has been stated that up-down-state (UDS) cortical oscillation levels between excitatory and inhibitory neurons play a fundamental role in brain network construction. Predicting the time series behaviors of neurons in periodic and chaotic regimes can help in improving diseases, higher-order human activities, and memory consolidation. Predicting the time series is usually done by machine learning methods. In paper, the deep bidirectional long short-term memory (DBLSTM) network is employed to predict the time evolution of regular, large-scale UDS oscillations produced by a previously developed neocortical network model. In noisy time-series prediction tasks, we compared the DBLSTM performance with two other variants of deep LSTM networks: standard LSTM, LSTM projected, and gated recurrent unit (GRU) cells. We also applied the classic seasonal autoregressive integrated moving average (SARIMA) time-series prediction method as an additional baseline. The results are justified through qualitative resemblance between the bifurcation diagrams of the actual and predicted outputs and quantitative error analyses of the network performance. The results of extensive simulations showed that the DBLSTM network provides accurate short and long-term predictions in both periodic and chaotic behavioral regimes and offers robust solutions in the presence of the corruption process.

  相似文献   

6.

The COVID-19 pandemic confronts governments and their health systems with great challenges for disease management. In many countries, hospitalization and in particular ICU occupancy is the primary measure for policy makers to decide on possible non-pharmaceutical interventions. In this paper a combined methodology for the prediction of COVID-19 case numbers, case-specific hospitalization and ICU admission rates as well as hospital and ICU occupancies is proposed. To this end, we employ differential flatness to provide estimates of the states of an epidemiological compartmental model and estimates of the unknown exogenous inputs driving its nonlinear dynamics. A main advantage of this method is that it requires the reported infection cases as the only data source. As vaccination rates and case-specific ICU rates are both strongly age-dependent, specifically an age-structured compartmental model is proposed to estimate and predict the spread of the epidemic across different age groups. By utilizing these predictions, case-specific hospitalization and case-specific ICU rates are subsequently estimated using deconvolution techniques. In an analysis of various countries we demonstrate how the methodology is able to produce real-time state estimates and hospital/ICU occupancy predictions for several weeks thus providing a sound basis for policy makers.

  相似文献   

7.

This paper introduces a homogeneous controller along a fixed-time state and fault observer for finite-time stabilization and fault accommodation of a remotely-operated vehicle in the presence of actuator saturation and rate limits. For this, a novel tuning algorithm is improvised for manipulating the degree of homogeneity in homogeneous controllers to effectively acquire different properties from the overall control system. The tuning of degree of homogeneity is based on vehicle’s velocity. The proposed algorithm results in a switching-type controller, which undergoes three different stages during the operation, to eliminate the sensitivity of conventional finite-time and fixed-time controllers to large initial errors in the presence of thruster constraints. In addition, a new fixed-time fault and state observer is designed for the realization of output feedback control and fault tolerance by combining a fixed-time state observer with a fault estimation unit. In contrast to conventional extended-state observers, this observer considers the dynamics of the thruster system in its formulation so that better performance can be provided for the control system upon thruster failures. Control allocation is utilized to accommodate thruster failures and faults and to take account of thruster saturation and rate limits. Stability analyses are carried out for the overall control system and the proposed observer. It is shown that the closed-loop control system would be globally finite-time stable. The state estimation subsystem is fixed-time stable and the fault estimation unit is input-to-state stable. Simulations are carried out and comparisons are made with several finite-time and fixed-time controllers to outline the advantages of the proposed homogeneous controller and the benefits of the overall fault-tolerant control system.

  相似文献   

8.
Wang  Xiaochen  Wang  Shengfeng  Lan  Yueheng  Tao  Xiaofeng  Xiao  Jinghua 《Nonlinear dynamics》2020,101(3):2003-2012
Nonlinear Dynamics - The pandemic of coronavirus disease 2019 (COVID-19) has threatened the social and economic structure all around the world. Generally, COVID-19 has three possible transmission...  相似文献   

9.
Hui  Hongwen  Zhou  Chengcheng    Xing  Li  Jiarong 《Nonlinear dynamics》2020,101(3):1933-1949

Since the outbreak of coronavirus disease in 2019 (COVID-19), the disease has rapidly spread to the world, and the cumulative number of cases is now more than 2.3 million. We aim to study the spread mechanism of rumors on social network platform during the spread of COVID-19 and consider education as a control measure of the spread of rumors. Firstly, a novel epidemic-like model is established to characterize the spread of rumor, which depends on the nonautonomous partial differential equation. Furthermore, the registration time of network users is abstracted as ‘age,’ and the spreading principle of rumors is described from two dimensions of age and time. Specifically, the susceptible users are divided into higher-educators class and lower-educators class, in which the higher-educators class will be immune to rumors with a higher probability and the lower-educators class is more likely to accept and spread the rumors. Secondly, the existence and uniqueness of the solution is discussed and the stability of steady-state solution of the model is obtained. Additionally, an interesting conclusion is that the education level of the crowd is an essential factor affecting the final scale of the spread of rumors. Finally, some control strategies are presented to effectively restrain the rumor propagation, and numerical simulations are carried out to verify the main theoretical results.

  相似文献   

10.
Chen  Lian  Zhang  Jing  Quan  Quan 《Nonlinear dynamics》2023,111(9):8313-8327

In practice, the unbalanced mass of the propeller is the leading cause of vibration in a quadcopter. Therefore, this paper proposes an additive-state-decomposition notch dynamic inversion controller to suppress the vibration noise. Firstly, the vibration mechanics model based on unbalanced mass is established and its characteristic frequency is analyzed. Then, the specific form of the notch filter is designed, and this characteristic frequency is taken as its internal parameter. Next, stability analysis shows that the proposed controller guarantees that all attitude signals are globally uniformly ultimately bounded. In particular, the notch filter can effectively reduce the vibration having a specific frequency. Finally, the proposed controller is performed on a real quadcopter to verify its vibration reduction performance.

  相似文献   

11.
12.
Yasir  Kashif Ammar  Liu  Wu-Ming 《Nonlinear dynamics》2021,106(2):1187-1195
Nonlinear Dynamics - The extensive proliferation of recent coronavirus (COVID-19), all over the world, is the outcome of social interactions through massive transportation, gatherings and...  相似文献   

13.
Fang  Haoran  Wu  Yuxiang  Xu  Tian  Wan  Fuxi  Wang  Xiaohong 《Nonlinear dynamics》2022,110(1):497-512

This paper solves the prescribed-time control problem for a class of robotic manipulators with system uncertainty and dead zone input. To make the system stable within a given convergence time T, a novel prescribed-time adaptive neural tracking controller is proposed by using the temporal scale transformation method and Lyapunov stability theory. Unlike the finite-time and the fixed-time stability where the convergence time depends on the controller parameters, the convergence time constant T is introduced into the proposed controller so that the closed-loop system will be stable within T. To cope with the system uncertainty, radial basis function neural networks (RBFNNs) are used and only need to update one parameter online. In addition, by choosing the same structure and parameters of RBFNNs, the proposed method can shorten the convergence time of the neural networks. Finally, simulation results are presented to demonstrate the effectiveness of the prescribed-time controller.

  相似文献   

14.
In this paper, a finite-time controller is proposed for the quadrotor aircraft to achieve hovering control in a finite time. The design of controller is mainly divided into two steps. Firstly, a saturated finite-time position controller is designed such that the position of quadrotor aircraft can reach any desired position in a finite time. Secondly, a finite-time attitude tracking controller is designed, which can guarantee that the attitude of quadrotor aircraft converges to the desired attitude in a finite time. By homogenous system theory and Lyapunov theory, the finite-time stability of the closed-loop systems is given through rigorous mathematical proofs. Finally, numerical simulations are given to show that the proposed algorithm has a faster convergence performance and a stronger disturbance rejection performance by comparing to the PD control algorithm.  相似文献   

15.
Wei  Chengzhou  Li  Junmin 《Nonlinear dynamics》2021,103(3):2753-2768

In this paper, the finite-time non-fragile boundary feedback control problem is investigated for a class of nonlinear parabolic systems, where both the multiplicative and additive controller gain variations are considered to describe the actuator parameter perturbation. Non-fragile boundary control strategies are designed with respect to two controller gain variations via collocated or non-collocated boundary measurement, respectively. In light of the finite-time stability and Lyapunov-based techniques, some sufficient conditions are presented in terms of linear matrix inequalities such that the resulting closed-loop system is well-posedness and practically finite-time stable. Finally, numerical examples are given to verify the effectiveness of the proposed design method.

  相似文献   

16.
温控箱数学模型的建立及其自适应PID控制   总被引:2,自引:0,他引:2  
一本文针对用于惯性元件测试的数字式温度控制系统,从传热学原理出发,推导出了该系统温控箱的差分模型结构,并通过大量的实验确定了模型系数波动范围及均值;由此提出了一种较实用的自适应PID方案,改进了原有的常规PID控制器。仿真结果表明,改进的温控器较原控制器有较强的适应性。  相似文献   

17.
For a vibro-impact system with clearance, the model-free chaos control method based on adaptive hybrid gravitational search algorithm (or AHGSA algorithm for short) is proposed. Nonparametric time-varying dynamic linear model based on pseudo-partial-derivative is established using input/output data of the controlled system, and on this basis, the optimal controller is designed according to the quadratic performance index, and the controller parameters is optimized using AHGSA algorithm. By combining the artificial bee colony search operator and chaos optimization strategy, gravitational search algorithm (or GSA algorithm for short) is improved from three aspects (i.e., population initialization, velocity and position update, gravity coefficient adjustment) to achieve a balance between the global detection ability and the local development ability. AHGSA algorithm has good optimization accuracy and efficiency: The arbitrariness is avoided in controller parameters selection, and the quality of the chaos control is ensured as well. In simulation experiment, the model-free controller optimized is used to control the chaotic motion of a single-degree-of-freedom vibro-impact system with clearance to verify the validity and feasibility of the proposed chaos control method. The simulation results show that the control effect is good, and the proposed chaos control method has the following advantages: the proposed chaos control method does not depend on the precise model of the controlled system, and the controller is easy to be designed and implemented.  相似文献   

18.
A physicomathematical model of the vibroexcitation in the meshing of imprecise deformable spur-gear teeth is proposed. The gearing is regarded as a parametric nonlinear system, with unilateral elastic connections that separate under certain conditions. The structure of the system varies over time, according to the dynamic state of the system. Analytical expressions for the exciting forces are obtained, along with the equations of motion, the relevant algorithm, information on the corresponding software, and computational and experimental data. A. A. Blagonravov Institute of Mechanical Engineering, Russian Academy of Sciences, Moscow. Translated from Prikladnaya Mekhanika, Vol. 35, No. 11, pp. 3–19, November, 1999.  相似文献   

19.
Rabiu  Musa  Iyaniwura  Sarafa A. 《Nonlinear dynamics》2022,109(1):203-223

We developed an endemic model of COVID-19 to assess the impact of vaccination and immunity waning on the dynamics of the disease. Our model exhibits the phenomenon of backward bifurcation and bi-stability, where a stable disease-free equilibrium coexists with a stable endemic equilibrium. The epidemiological implication of this is that the control reproduction number being less than unity is no longer sufficient to guarantee disease eradication. We showed that this phenomenon could be eliminated by either increasing the vaccine efficacy or by reducing the disease transmission rate (adhering to non-pharmaceutical interventions). Furthermore, we numerically investigated the impacts of vaccination and waning of both vaccine-induced immunity and post-recovery immunity on the disease dynamics. Our simulation results show that the waning of vaccine-induced immunity has more effect on the disease dynamics relative to post-recovery immunity waning and suggests that more emphasis should be on reducing the waning of vaccine-induced immunity to eradicate COVID-19.

  相似文献   

20.
Yang  Cun  Wu  Zhaojing 《Nonlinear dynamics》2023,111(9):8369-8381

In this paper, the adaptive robust controller based on dynamic surface technique is investigated for the maneuvering problem of uncertain nonlinear systems with external disturbances. As preliminary, the definition of semi-globally uniformly practically asymptotically stable and its Lyapunov criterion are presented. The static part of controller with smooth robust compensator and adaptive law is designed to achieve the geometric task of maneuverability, and the dynamic control is proposed to reach the speed task by filtered-gradient update law. Moreover, utilizing first-order filter, the problem of “dimensional explosion” is avoided in controller design. Simulation is conducted for three-mecanum-wheeled mobile robot actuated by DC motors to illustrate the effectiveness of the control strategy.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号