首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sun  Zhijian  Zhang  Guoqing  Yang  Jian  Zhang  Weidong 《Nonlinear dynamics》2018,91(2):1163-1175
Nonlinear Dynamics - This brief proposes an adaptive sliding mode control law for an underactuated vessel via parameter estimation to follow a desired path. An adaptive continuous PI sliding mode...  相似文献   

2.
This paper presents a novel robust tracking and model following control scheme for a class of linear systems with mismatched state and input delays. The algorithm is based on discrete-time sliding mode control (SMC) and time-delay control theory. The proposed scheme ensures the stability and robustness against time delays without state transformation, and achieves the ultimate boundedness of the tracking error. The selection of sliding surface and the existence of sliding mode are two important issues, which have been addressed. Chattering phenomenon and reaching phase are avoided. Simulation results demonstrate the validity of the proposed scheme.  相似文献   

3.
Allafi  Walid  Zajic  Ivan  Uddin  Kotub  Shen  Zhonghua  Marco  James  Burnham  Keith 《Nonlinear dynamics》2018,94(4):2697-2713
Nonlinear Dynamics - This paper presents a novel direct parameter estimation method for continuous-time fractional nonlinear models. This is achieved by adapting a filter-based approach that uses...  相似文献   

4.
This paper presents a gradient-based iterative identification algorithm and an auxiliary-model-based multi-innovation generalized extended stochastic gradient algorithm for input nonlinear systems with autoregressive moving average (ARMA) noises, i.e., the input nonlinear Box–Jenkins (IN–BJ) systems. The estimation errors given by the gradient-based iterative algorithm are smaller than the generalized extended stochastic gradient algorithm under same data lengths. A simulation example is provided.  相似文献   

5.
6.
董钢  王建国 《计算力学学报》2014,31(4):480-485,494
基于大系统分散控制思想,将大尺度高阶建筑结构系统分解为多个子结构系统;子结构之间的相互耦合作用视为有界广义力,得到以状态方程形式的子结构模型。利用滑模理论的抗摄动条件,设计具有全局稳定的子结构滑动模态轨迹,利用子结构系统局部状态实现全局稳定的控制力条件,并以参数ρi实现各子结构间的调节,建立稳定的分散控制格式。在控制算法中采用了准滑模控制方法,克服变结构滑动模态中的抖振影响。利用本文方法,对20层钢结构基准模型在地震激励下的控制进行设计并数值仿真,验证了该方法的有效性。  相似文献   

7.
8.
9.
10.
The control problem of the single machine infinite bus system with TCSC is dealt with. Based on the maximization of the external disturbances on the system model, an adaptive nonlinear controller for large disturbance attenuation and a parameter updating law are designed by using the backstepping method. The parameter uncertainty of the transmission line is considered, as well as the influences of large external disturbances to the system output are mainly discussed. The nonlinear controller does not have the sensitivity to the influences of external disturbances, but also has strong robustness for system parameters variation. The simulation results show that the control effect of the large disturbance attenuation controller more advantages by comparing with the control performance of conventional nonlinear robust controller.  相似文献   

11.
12.
Cui  Ting  Ding  Feng 《Nonlinear dynamics》2023,111(9):8477-8496

This paper investigates the parameter estimation issue for an input nonlinear multivariable state-space system. First, the canonical form of the input nonlinear multivariable state-space system is obtained through the linear transformation and the over-parameterization identification model of the considered system is derived. Second, by cutting down the redundant parameter estimates and extracting the unique parameter estimates from the parameter estimation vector in the least-squares identification method, we present an over-parameterization-based partially coupled average recursive extended least-squares parameter estimation algorithm to estimate the parameters. As for the unknown states in the parameter estimation algorithm, a new state estimator is designed to generate the state estimates. Third, in order to improve the computational efficiency of the parameter estimation algorithm, an over-parameterization-based multi-stage partially coupled average recursive extended least-squares algorithm is proposed. Finally, the computational efficiency analysis and the simulation examples are given to verify the effectiveness of the proposed algorithms.

  相似文献   

13.
14.
This paper introduces a finite-time control technique for control of a class of non-autonomous fractional-order nonlinear systems in the presence of system uncertainties and external noises. It is known that finite-time control methods demonstrate better robustness and disturbance rejection properties. Moreover, finite time control methods have optimal settling time. In order to design a robust finite-time controller, a new nonsingular terminal sliding manifold is proposed. The proposed sliding mode dynamics has the property of fast convergence to zero. Afterwards, a novel fractional sliding mode control law is introduced to guarantee the occurrence of the sliding motion in finite time. The convergence times of both reaching and sliding phases are estimated. The main characteristics of the proposed fractional sliding mode technique are (1) finite-time convergence to the origin; (2) the use of only one control input; (3) robustness against system uncertainties and external noises; and (4) the ability of control of non-autonomous fractional-order systems. At the end of this paper, some computer simulations are included to highlight the applicability and efficacy of the proposed fractional control method.  相似文献   

15.
16.
Liu  Junjie  Sun  Mingwei  Chen  Zengqiang  Sun  Qinglin 《Nonlinear dynamics》2020,99(4):2785-2799
Nonlinear Dynamics - This paper proposes a finite-time decoupling control strategy for aircraft with thrust vector at high angle of attack maneuver. Firstly, the nonlinear mathematical model of the...  相似文献   

17.
This paper presents a decoupled terminal sliding mode control (DTSMC) and a nonsingular decoupled terminal sliding mode control (NDTSMC) method for a class of fourth-order nonlinear systems. First, the nonlinear fourth-order system is decoupled into two (primary and secondary) second-order subsystems. The sliding surface of each subsystem was designed by utilizing time-varying coefficients, which are computed by linear functions derived from the input–output mapping of the one-dimensional fuzzy rule bases. Then the control target of the secondary subsystem was embedded to the primary subsystem by the help of an intermediate signal. Thereafter, the DTSMC and the NDTSMC methods were utilized separately to ensure that both subsystems converge to their equilibrium points. The inverted pendulum system was used in the simulations and results were given to show the effectiveness of the proposed methods. It is seen that the proposed methods exhibit a considerable improvement in terms of a faster dynamic response and lower IAE and ITAE values as compared with the existing decoupled control methods in the literature.  相似文献   

18.
This paper proposes a robust sliding mode control strategy for an uncertain nonlinear system subjected to time-varying disturbance. The class of system considered includes state-dependent nonlinearity in the input vector (in addition to the plant matrix). The control scheme uses inertial delay control to estimate the lumped uncertainty. The proposed control enforces sliding without using the discontinuous control and without requiring the knowledge of uncertainties or their bounds. The overall stability of the system is proved. The effectiveness of the proposed strategy is verified for model following and robust performance, by simulation of an illustrative example and an application to inverted pendulum system.  相似文献   

19.
In this paper, a new adaptive fuzzy sliding mode (AFSM) observer is proposed which can be used for a class of MIMO nonlinear systems. In the proposed algorithm, the zero-input dynamics of the plant could be unknown. In this method, a fuzzy system is designed to estimate the nonlinear behavior of the observer. The output of fuzzy rules are tuned adaptively, based on the observer error. The output connection matrix is used to combine the observer errors of individual subsystems. A robust term, which is designed based on the sliding mode theory, is added to the observer to compensate the fuzzy estimation error. The estimation error bound is adjusted by an adaptive law. The main advantage of the proposed observer is that, unlike many of the previous works, the measured outputs is not limited to the first entries of a canonical-form state vector. The proposed observer estimates the closed-loop state tracking error asymptotically, provided that the output gain matrix includes Hurwitz coefficients. The chattering is eliminated by using boundary layers around the sliding surfaces and the observer convergence is proved using a Lyapunov-based approach. The proposed method is applied on a real multilink robot manipulator. The performance of the observer shows its effectiveness in the real world.  相似文献   

20.
In this paper, a generalized control scheme for the class of nonlinear multiple-input multiple-output (MIMO) uncertain system with cross-coupling and nonlinearity in their input channels under the influence of external disturbances is presented. This is accomplished using full-order model following sliding mode control based on uncertainty and disturbance estimator (UDE) technique. The fourth-order uncertain nonlinear MIMO system is separated into multiple single-input single-output double integrator subsystems by considering the effect of input coupling and nonlinearity as a disturbance. The UDE is designed to estimate the plant uncertainties as well as external disturbances without the knowledge of the bounds on the uncertainties. The proposed method decouples the system and overcomes the problem of high initial control which ultimately eliminates the reaching phase and the chattering phenomenon which is generally occurred in sliding mode control. The effectiveness of the proposed control scheme is demonstrated through numerical simulation of two-link manipulator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号