首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Lee DH  Taher A  Hossain S  Jin MJ 《Organic letters》2011,13(20):5540-5543
The β-diketiminatophosphane Pd complex acted as a powerful catalyst for the Heck coupling of aryl chlorides with alkenes. Various aryl and heteroaryl chlorides were coupled efficiently under relatively mild conditions. Furthermore, this catalytic system also proved to be highly active in the Buchwald-Hartwig coupling of deactivated and sterically hindered aryl chlorides at room temperature.  相似文献   

2.
综述了近几年来以N-杂环卡宾为配体的金属络合物催化有机合成的反应。  相似文献   

3.
The bis-1,4-dimesityl-1,2,3-triazol-5-ylidene-palladium complex (1a) successfully catalyzes the Mizoroki-Heck and Sonogashira coupling reactions with aryl bromides to give the corresponding alkenes and alkynes, respectively, in good to excellent yields. In the Mizoroki-Heck reaction, electron-rich, electron-poor, and functionalized aryl bromides and alkenes are tolerated, while the substrates are limited to electron-poor aryl halides in the Sonogashira coupling reaction. The palladium complex also catalyzes cross-coupling reactions with aryl chlorides to give higher yields of products than does the bis-IMes-Pd complex analogue (2), under specific conditions.  相似文献   

4.
Palladium catalyzed bis-Suzuki coupling reactions of 2-trifluoromethyl-1,1-dibromoalkenes with aryl and hetero-aryl boronic acids afford 2-trifluoromethyl tetra-substituted alkenes in excellent yield.  相似文献   

5.
We report an efficient means of sp2–sp3 cross coupling for a variety of terminal monosubstituted olefins with aryl electrophiles using Pd and CuH catalysis. In addition to its applicability to a range of aryl bromide substrates, this process was also suitable for electron-deficient aryl chlorides, furnishing higher yields than the corresponding aryl bromides in these cases. The optimized protocol does not require the use of a glovebox and employs air-stable Cu and Pd complexes as precatalysts. A reaction on 10 mmol scale further highlighted the practical utility of this protocol. Employing a similar protocol, a series of cyclic alkenes were also examined. Cyclopentene was shown to undergo efficient coupling under these conditions. Lastly, deuterium-labeling studies indicate that deuterium scrambling does not take place in this sp2-sp3 cross coupling, implying that β-hydride elimination is not a significant process in this transformation.  相似文献   

6.
We report an efficient means of sp2–sp3 cross coupling for a variety of terminal monosubstituted olefins with aryl electrophiles using Pd and CuH catalysis. In addition to its applicability to a range of aryl bromide substrates, this process was also suitable for electron‐deficient aryl chlorides, furnishing higher yields than the corresponding aryl bromides in these cases. The optimized protocol does not require the use of a glovebox and employs air‐stable Cu and Pd complexes as precatalysts. A reaction on 10 mmol scale further highlighted the practical utility of this protocol. Employing a similar protocol, a series of cyclic alkenes were also examined. Cyclopentene was shown to undergo efficient coupling under these conditions. Lastly, deuterium‐labeling studies indicate that deuterium scrambling does not take place in this sp2‐sp3 cross coupling, implying that β‐hydride elimination is not a significant process in this transformation.  相似文献   

7.
Miki Murata 《Tetrahedron》2004,60(34):7397-7403
The general and efficient cross-coupling of thiols with aryl halides was developed utilizing Pd(OAc)2/1,1′-bis(diisopropylphosphino)ferrocene as the catalyst. The substrate scope is broad and includes a variety of aryl bromides and chlorides, which can be coupled to aliphatic and aromatic thiols. This catalyst system has the widest substrate scope of any reported to date. The present catalyst system also enables the palladium-catalyzed coupling of secondary phosphines with aryl bromides and chlorides.  相似文献   

8.
Novel nickel-based catalytic systems for the C-H arylation of azoles with haloarenes and aryl triflates have been developed. We have established that Ni(OAc)(2)/bipy/LiOtBu serves as a general catalytic system for the coupling with aryl bromides and iodides as aryl electrophiles. For couplings with more challenging electrophiles, such as aryl chlorides and triflates, the Ni(OAc)(2)/dppf (dppf = 1,1'-bis(diphenylphosphino)ferrocene) system was found to be effective. Thiazoles, benzothiazoles, oxazoles, benzoxazoles, and benzimidazoles can be used as the heteroarene coupling partner. Upon further investigation, we discovered a new protocol for the present coupling using Mg(OtBu)(2) as a milder and less expensive alternative to LiOtBu. Attempts to reveal the mechanism of this nickel-catalyzed heterobiaryl coupling are also described. This newly developed methodology has been successfully applied to the syntheses of febuxostat (a xanthine oxidase inhibitor that is effective for the treatment of gout and hyperuricemia), tafamidis (effective for the treatment of TTR amyloid polyneuropathy), and texaline (a natural product having antitubercular activity).  相似文献   

9.
A method for the reductive cross‐coupling of conjugated arylalkenes and aryl bromides with hydrosilanes by cooperative palladium/copper catalysis was developed, thus resulting in the highly regioselective formation of various 1,1‐diarylalkanes, including a biologically active molecule. Under the applied reaction conditions, high levels of functional‐group tolerance were observed, and the reductive cross‐coupling of internal alkynes with aryl bromides afforded trisubstituted alkenes.  相似文献   

10.
Arenes with β-stereogenic centers are important substructures in pharmaceuticals and natural products. We have developed an asymmetric anti-Markovnikov hydroarylation of 1,1-disubstituted olefins by dual palladium and copper hydride catalysis as a convenient and general approach to access these substructures. This efficient one-step process addresses several limitations of the traditional stepwise approaches. The use of cesium benzoate as a base and a common phosphine ligand for both the Cu- and Pd-catalyzed processes were important discoveries that allow these challenging olefin substrates to be efficiently transformed. A variety of aryl bromide coupling partners, including numerous heterocycles, were coupled with 1,1-disubstituted alkenes to generate arenes with β-stereogenic centers.  相似文献   

11.
Arenes with β‐stereogenic centers are important substructures in pharmaceuticals and natural products. We have developed an asymmetric anti‐Markovnikov hydroarylation of 1,1‐disubstituted olefins by dual palladium and copper hydride catalysis as a convenient and general approach to access these substructures. This efficient one‐step process addresses several limitations of the traditional stepwise approaches. The use of cesium benzoate as a base and a common phosphine ligand for both the Cu‐ and Pd‐catalyzed processes were important discoveries that allow these challenging olefin substrates to be efficiently transformed. A variety of aryl bromide coupling partners, including numerous heterocycles, were coupled with 1,1‐disubstituted alkenes to generate arenes with β‐stereogenic centers.  相似文献   

12.
Organolithium compounds are amongst the most important organometallic reagents and frequently used in difficult metallation reactions. However, their direct use in the formation of C−C bonds is less established. Although remarkable advances in the coupling of aryllithium compounds have been achieved, Csp2−Csp3 coupling reactions are very limited. Herein, we report the first general protocol for the coupling or aryl chlorides with alkyllithium reagents. Palladium catalysts based on ylide-substituted phosphines (YPhos) were found to be excellently suited for this transformation giving high selectivities at room temperature with a variety of aryl chlorides without the need for an additional transmetallation reagent. This is demonstrated in gram-scale synthesis including building blocks for materials chemistry and pharmaceutical industry. Furthermore, the direct coupling of aryllithiums as well as Grignard reagents with aryl chlorides was also easily accomplished at room temperature.  相似文献   

13.
Palladium-catalysed arylation of alkenes with the three bromobenzoic acids or their acyl chlorides provides an efficient and selective method for the preparation of non-symmetrically substituted divinylbenzene derivatives. In the presence of palladium acetate and a phosphorus ligand the free acids react as aryl bromides, with the exception of 2-bromobenzoic acid. If palladium acetate is used alone as catalyst, all three bromobenzoyl chlorides react only as aroyl chlorides. Using two different alkenes a given non-symmetrically substituted divinylbenzene can be prepared by four different routes, allowing for an optimum choice of synthesis path. Substituent effects in the aromatic derivatives and the reactivity of the alkenes in arylation are the principal features to be taken into account. The reaction pathway can generally be chosen to give excellent yields in short reaction times at low palladium concentrations.  相似文献   

14.
A CuI-catalyzed direct coupling of aryl boronic acids with arylsulfonyl chlorides for the preparation of diaryl thioethers was developed. The reaction is initiated by a PPh3 reduction of the arylsulfonyl chloride, followed by a CuI-catalyzed C–S coupling with an aryl boronic acid. Various arylsulfonyl chlorides can directly serve as a sulfur source in this mild and efficient reaction giving the desired products in moderate to good yields. Moreover, this practical method has also been applied to the thioetherification of aryl iodides and acetylacetones.  相似文献   

15.
Palladium-catalyzed coupling reactions of aryl chlorides   总被引:6,自引:0,他引:6  
Collectively, palladium-catalyzed coupling reactions represent some of the most powerful and versatile tools available to synthetic organic chemists. Their widespread popularity stems in part from the fact that they are generally tolerant to a large number of functional groups, which allows them to be employed in a wide range of applications. However, for many years a major limitation of palladium-catalyzed coupling processes has been the poor reactivity of aryl chlorides, which from the standpoints of cost and availability are more attractive substrates than the corresponding bromides, iodides, and triflates. Traditional palladium/triarylphosphane catalysts are only effective for the coupling of certain activated aryl chlorides (for example, heteroaryl chlorides and substrates that bear electron-withdrawing groups), but not for aryl chlorides in general. Since 1998, major advances have been described by a number of research groups addressing this challenge; catalysts based on bulky, electron-rich phosphanes and carbenes have proved to be particularly mild and versatile. This review summarizes both the seminal early work and the exciting recent developments in the area of palladium-catalyzed couplings of aryl chlorides.  相似文献   

16.
An efficient and effective microwave-assisted cross-coupling of terminal alkynes with various aryl chlorides including sterically hindered, electron-rich, electron-neutral, and electron-deficient aryl chloride is developed. It proceeds faster and generally gives good to excellent yields and also can be extended successfully to the Suzuki coupling and Buchwald-Hartwig amination, as well as the Heck coupling with inert aryl chlorides. The short reaction times and simple reaction conditions coupling with a broad substrate scope render this method particularly attractive for the efficient preparation of biologically and medicinally interesting molecules.  相似文献   

17.
A general and simple nickel-catalyzed coupling of aryl chlorides and amines is reported. The scope and limitations of the coupling process using Ni(0), 1,3-bis(2,6-diisopropylphenyl)dihydroimidazol-2-ylidene, and NaO-t-Bu as base were investigated. Secondary cyclic and acyclic amines and anilines provided the arylamine coupling products in good to excellent yields. Compared to palladium-catalyzed aminations, this procedure offers an alternative route to N-substituted anilines starting from readily available aryl chlorides.  相似文献   

18.
Copper chloride-catalyzed S-arylation of arenethiols is effected with activated aryl chlorides in neat water by using ethylenediamine as the pair ligand/base. This convenient, environmentally more friendly procedure for the coupling of aryl chlorides allows the arylation between sterically demanding coupling partners.  相似文献   

19.
Treatment of NMP solutions of NiCl(2) with 1,1',1'-(phosphanetriyl)tripiperidine (≈2.05 equiv), dissolved in THF, in air at 25 °C forms a highly active catalytic system for the cross-coupling of a large variety of electronically activated, non-activated, deactivated, and ortho-substituted, heterocyclic, and functionalized aryl bromides and aryl chlorides with diarylzinc reagents. Very high levels of conversion and yields were obtained within 2 h at 60 °C in the presence of only 0.1 mol% of catalyst (based on nickel) and thus at catalyst loadings far lower than typically reported for nickel-catalyzed versions of the Negishi reaction. Various aryl halides-which may contain trifluoromethyl groups, fluorides, or other functional groups such as acetals, ketones, ethers, esters, lactones, amides, imines, anilines, alkenes, pyridines, quinolines, and pyrimidines-were successfully converted into the corresponding biaryls. Electronic and steric variations are tolerated in both reaction partners. Experimental observations indicate that a molecular (Ni(I)/Ni(III)) mechanism is operative.  相似文献   

20.
The lithiation/alkylation of fluorene leads to various 9-alkyl-fluorenes (alkyl=Me, Et, iPr, -Pr, -C18H25) in>95% yields, for which lithiation and reaction with R2PCl (R=Cy, iPr, tBu) generates 9-alkyl, 9-PR2-fluorenes which constitute electron-rich and bulky phosphine ligands. The in-situ-formed palladium-phosphine complexes ([Na2PdCl4], phosphonium salt, base, substrates) were tested in the Sonogashira, Suzuki, and Buchwald-Hartwig reactions of aryl chlorides and aryl bromides in organic solvents. The Sonogashira coupling of aryl chlorides at 100-120 degrees C leads to>90% yields with 1 mol% of Pd catalyst. The Suzuki coupling of aryl chlorides typically requires 0.05 mol% of Pd catalyst at 100 degrees C in dioxane for quantitative product formation. To carry out "green" cross-coupling reactions in water, 9-ethylfluorenyldicyclohexylphosphine was reacted in sulphuric acid to generate the respective 2-sulfonated phosphonium salt. The Suzuki coupling of activated aryl chlorides by using this water-soluble catalyst requires only 0.01 mol% of Pd catalyst, while a wide range of aryl chlorides can be quantitatively converted into the respective coupling products by using 0.1-0.5 mol% of catalyst in pure water at 100 degrees C. Difficult substrate combinations, such as naphthylboronic acid or 3-pyridylboronic acid and aryl chlorides are coupled at 100 degrees C by using 0.1-0.5 mol% of catalyst in pure water to obtain the respective N-heterocycles in quantitative yields. The copper-free aqueous Sonogashira coupling of aryl bromides generates the respective tolane derivatives in>95% yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号