首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《中国化学快报》2023,34(12):108604
Electrochemical nitrogen reduction reaction (NRR) is a mild and sustainable method for ammonia synthesis. Therefore, developing high activity, selectivity, and economic efficiency catalysts with considering the synergistic effects between catalysts and carriers to design novel structural models is very important. Considering the non-noble metal NRR catalyst, Mo3, we tried to find a suitable carrier which is stable and economical. Herein, we used the largest atomically precise aluminum-pyrazole ring (AlOC-69) to date (diameter up to 2.3 nm). The larger ring cavities and the presence of abundant hydroxy groups make AlOC-69 an ideal molecular carrier model and provide a basis for studying its structure-activity relationship. The formation energy (−0.76 eV) and stable Mo-O bonds indicate that Mo3 can be stabilized on the Al10O10 surface. Additionally, N2 has fully activated due to the strong interaction between the p-orbital of N and the d-orbital of Mo. The low limiting potential (−0.28 V) emerges that Mo3@Al10O10 has ideal catalytic activity and selectivity. This research provides a promising catalyst model and an understanding of its catalytic process at the atomic level, providing a new approach for the co-design of catalyst and carrier in NRR.  相似文献   

2.
The conversion of nitrogen to ammonia by electrocatalysis under mild conditions is a valuable research direction, which has been a sustainable alternative to the traditional Haber-Bosch method. However, the conversion remains a huge challenge in chemistry at this time. In this work, the density functional theory (DFT) is used to study the electrocatalytic nitrogen reduction reaction (NRR) performance of Mo12 clusters on C2N monolayer (Mo12−C2N). It is found that the diversity of active sites of the Mo12 cluster provides favorable reaction paths for intermediates, which reduces reaction barrier of NRR. Mo12−C2N shows excellent NRR performances with limiting potentials of −0.26 V vs. reversible hydrogen electrode (RHE).  相似文献   

3.
《中国化学快报》2022,33(10):4655-4658
Electrochemical nitrogen reduction reaction (NRR) has been considered as an appealing and sustainable method to produce ammonia from N2 under ambient conditions, attracting increasing interest. Limited by low solubility of N2 in water and high stability of NN triple bond, developing NRR electrocatalysts with both strong N2 adsorption/activation and high electrical conductivity remain challenging. Here, we demonstrate an efficient strategy to develop NRR electrocatalyst with synergistically enhanced N2 adsorption/activation and electrical conductivity by heteroatom doping. Combining computational and experimental study, the DFT-designed Ti-doped SnO2 exhibits significantly enhanced NRR performance with ammonia yield rate of 13.09 µg h?1 mg?1 at ?0.2 V vs. RHE. Particularly, the Faradaic efficiency reaches up to 42.6%, outperforming most of Sn-based electrocatalysts. The fundamental mechanism for improving NRR performance of SnO2 by Ti doping is also revealed. Our work highlights a powerful strategy for developing high-activity electrocatalysts for NRR and beyond.  相似文献   

4.
As one of the 2D transition metal sulfides,1T phase MoS2 nanosheets (NSs) have been studied because of their distinguished conductivity and suitable electronic structure.Nevertheless,the active sites are limited to a small number of edge sites only,while the basal plane is catalytically inert.Herein,we report that boron (B) doped 1T phase Mo S2NSs can replace precious metals as a co-catalyst to assist in photocatalytic H2production of 2D layered g-C3N<...  相似文献   

5.
《中国化学快报》2021,32(12):3821-3824
The photocatalytic nitrogen reduction reaction (NRR) has mild reaction conditions and only requires sunlight energy as a driving force to replace the traditional ammonia synthesis method. We herein investigate the catalytic activity and selectivity on Penta-B2C for NRR by using density functional theory calculations. Penta-B2C is a semiconductor with an indirect bandgap (2.328 eV) and is kinetically stable based on molecular dynamic simulations. The optical absorption spectrum of Penta-B2C is achieved in the ultraviolet and visible range. Effective light absorption is more conducive to generate photo-excited electrons and improving photocatalytic performances. Rich B atoms as activation sites in Penta-B2C facilitate capturing N2. The activated N2 molecule prefers the side-on adsorption configuration on Penta-B2C, which facilitates the subsequent reduction reaction. Among considered NRR mechanisms on Penta-B2C, the best pathway prefers the enzymatic mechanism, only required a low onset potential of 0.23 V. The hydrogen evolution reaction is inhibited when the hydrogen adsorption concentration is increased or N2 molecules first occupy the adsorption sites. Our results indicate Penta-B2C is a highly reactive and selective photocatalyst for NRR. Our work provides theoretical insights into the experiments and has guiding significance to synthesize efficient NRR photocatalysts.  相似文献   

6.
Molybdenum(II) Halide Clusters with six Alcoholate Ligands: (C18H36N2O6Na)2[Mo6Cl8(OCH3)6] · 6CH3OH and (C18H36N2O6Na)2[Mo6Cl8(OC6H5)6] . The reaction of Na2[Mo6Cl8(OCH3)6] and 2,2,2-crypt yields (C18H36N2O6Na)2[Mo6Cl8(OCH3)6] · 6 CH3OH ( 1 ), which is converted to (C18H36N2O6Na)2[Mo6Cl8(OC6H5)6] ( 2 ) by metathesis with phenol. According to single crystal structure determinations ( 1 : P3 1c, a=14.613(3) Å, c=21.036(8) Å; 2 : P3 1c, a=15.624(1) Å, c=19.671(2) Å) the compounds contain anionic clusters [Mo6Cl8i(ORa)6]2? ( 1 : d(Mo—Mo) 2.608(1) Å to 2.611(1) Å, d(Mo—Cl) 2.489(1) Å to 2.503(1) Å, d(Mo—O) 2.046(4) Å; 2 : d(Mo—Mo) 2.602(3) Å to 2.608(3) Å, d(Mo—Cl) 2.471(5) Å to 2.4992(5) Å, d(Mo—O) 2.091(14) Å). Electronic interactions of the halide cluster and the phenolate ligands in [Mo6Cl8(OC6H5)6]2? is investigated by means of UV/VIS spectroscopy and EHMO calculations.  相似文献   

7.
The electrocatalytic nitrogen reduction reaction (NRR) is an alternative eco‐friendly strategy for sustainable N2 fixation with renewable energy. However, NRR suffers from sluggish kinetics owing to difficult N2 adsorption and N≡N cleavage. Now, nanoporous palladium hydride is reported as electrocatalyst for electrochemical N2 reduction under ambient conditions, achieving a high ammonia yield rate of 20.4 μg h?1 mg?1 with a Faradaic efficiency of 43.6 % at low overpotential of 150 mV. Isotopic hydrogen labeling studies suggest the involvement of lattice hydrogen atoms in the hydride as active hydrogen source. In situ Raman analysis and density functional theory (DFT) calculations further reveal the reduction of energy barrier for the rate‐limiting *N2H formation step. The unique protonation mode of palladium hydride would provide a new insight on designing efficient and robust electrocatalysts for nitrogen fixation.  相似文献   

8.
The nitrogen reduction reaction (NRR) has become an ideal alternative to the Haber‐Bosch process, as NRR possesses, among others, the advantage of operating under ambient conditions and saving energy consumption. The key to efficient NRR is to find a suitable electrocatalyst, which helps to break the strong N≡N bond and improves the reaction selectivity. Molybdenum disulfide (MoS2) as an emerging layered two‐dimensional material has attracted a mass of attention in various fields. In this minireview, we summarize the optimization strategies of MoS2‐based catalysts which have been developed to improve the weak NRR activity of primitive MoS2. Some theoretical predictions have also been summarized, which can provide direction for optimizing NRR activity of future MoS2‐based materials. Finally, an outlook about the optimization of MoS2‐based catalysts used in electrochemical N2 fixation are given.  相似文献   

9.
The highly efficient electrochemical hydrogen evolution reaction (HER) provides a promising pathway to resolve energy and environment problems. An electrocatalyst was designed with single Mo atoms (Mo‐SAs) supported on N‐doped carbon having outstanding HER performance. The structure of the catalyst was probed by aberration‐corrected scanning transmission electron microscopy (AC‐STEM) and X‐ray absorption fine structure (XAFS) spectroscopy, indicating the formation of Mo‐SAs anchored with one nitrogen atom and two carbon atoms (Mo1N1C2). Importantly, the Mo1N1C2 catalyst displayed much more excellent activity compared with Mo2C and MoN, and better stability than commercial Pt/C. Density functional theory (DFT) calculation revealed that the unique structure of Mo1N1C2 moiety played a crucial effect to improve the HER performance. This work opens up new opportunities for the preparation and application of highly active and stable Mo‐based HER catalysts.  相似文献   

10.
Vacancy engineering has been proved repeatedly as an adoptable strategy to boost electrocatalysis, while its poor selectivity restricts the usage in nitrogen reduction reaction (NRR) as overwhelming competition from hydrogen evolution reaction (HER). Revealed by density functional theory calculations, the selenium vacancy in ReSe2 crystal can enhance its electroactivity for both NRR and HER by shifting the d-band from −4.42 to −4.19 eV. To restrict the HER, we report a novel method by burying selenium vacancy-rich ReSe2@carbonized bacterial cellulose (Vr-ReSe2@CBC) nanofibers between two CBC layers, leading to boosted Faradaic efficiency of 42.5 % and ammonia yield of 28.3 μg h−1 cm−2 at a potential of −0.25 V on an abrupt interface. As demonstrated by the nitrogen bubble adhesive force, superhydrophilic measurements, and COMSOL Multiphysics simulations, the hydrophobic and porous CBC layers can keep the internal Vr-ReSe2@CBC nanofibers away from water coverage, leaving more unoccupied active sites for the N2 reduction (especially for the potential determining step of proton-electron coupling and transferring processes as *NN → *NNH).  相似文献   

11.
Vacancy engineering has been proved repeatedly as an adoptable strategy to boost electrocatalysis, while its poor selectivity restricts the usage in nitrogen reduction reaction (NRR) as overwhelming competition from hydrogen evolution reaction (HER). Revealed by density functional theory calculations, the selenium vacancy in ReSe2 crystal can enhance its electroactivity for both NRR and HER by shifting the d‐band from ?4.42 to ?4.19 eV. To restrict the HER, we report a novel method by burying selenium vacancy‐rich ReSe2@carbonized bacterial cellulose (Vr‐ReSe2@CBC) nanofibers between two CBC layers, leading to boosted Faradaic efficiency of 42.5 % and ammonia yield of 28.3 μg h?1 cm?2 at a potential of ?0.25 V on an abrupt interface. As demonstrated by the nitrogen bubble adhesive force, superhydrophilic measurements, and COMSOL Multiphysics simulations, the hydrophobic and porous CBC layers can keep the internal Vr‐ReSe2@CBC nanofibers away from water coverage, leaving more unoccupied active sites for the N2 reduction (especially for the potential determining step of proton‐electron coupling and transferring processes as *NN → *NNH).  相似文献   

12.
Nitrate is a pervasive aquatic contaminant of global environmental concern. In nature, the most effective nitrate reduction reaction (NRR) is catalyzed by nitrate reductase enzymes at neutral pH, using a highly‐conserved Mo center ligated mainly by oxo and thiolate groups. Mo‐based NRR catalysts mostly function in organic solvents with a low water stability. Recently, an oxo‐containing molybdenum sulfide nanoparticle that serves as an NRR catalyst at neutral pH was first reported. Herein, in a nanoparticle‐catalyzed NRR system a pentavalent MoV(=O)S4 species, an enzyme mimetic, served as an active intermediate for the NRR. Potentiometric titration analysis revealed that a redox synergy among MoV?S, S radicals, and MoV(=O)S4 likely play a key role in stabilizing MoV(=O)S4, showing the importance of secondary interactions in facilitating NRR. The first identification and characterization of an oxo‐ and thiolate‐ligated Mo intermediates pave the way to the molecular design of efficient enzyme mimetic NRR catalysts in aqueous solution.  相似文献   

13.
Developing noble‐metal‐free electrocatalysts is important to industrially viable ammonia synthesis through the nitrogen reduction reaction (NRR). However, the present transition‐metal electrocatalysts still suffer from low activity and Faradaic efficiency due to poor interfacial reaction kinetics. Herein, an interface‐engineered heterojunction, composed of CoS nanosheets anchored on a TiO2 nanofibrous membrane, is developed. The TiO2 nanofibrous membrane can uniformly confine the CoS nanosheets against agglomeration, and contribute substantially to the NRR performance. The intimate coupling between CoS and TiO2 enables easy charge transfer, resulting in fast reaction kinetics at the heterointerface. The conductivity and structural integrity of the heterojunction are further enhanced by carbon nanoplating. The resulting C@CoS@TiO2 electrocatalyst achieves a high ammonia yield (8.09×10?10 mol s?1 cm?2) and Faradaic efficiency (28.6 %), as well as long‐term durability.  相似文献   

14.
Developing the low-cost and efficient single-atom catalysts (SACs) for nitrogen reduction reaction (NRR) is of great importance while remains as a great challenge. The catalytic activity, selectivity and durability are all fundamentally related to the elaborate coordination environment of SACs. Using first-principles calculations, we investigated the SACs with single transition metal (TM) atom supported on defective boron carbide nitride nanotubes (BCNTs) as NRR electrocatalysts. Our results suggest that boron-vacancy defects on BCNTs can strongly immobilize TM atoms with large enough binding energy and high thermal/structural stability. Importantly, the synergistic effect of boron nitride (BN) and carbon domains comes up with the modifications of the charge polarization of single-TM-atom active site and the electronic properties of material, which has been proven to be the essential key to promote N2 adsorption, activation, and reduction. Specifically, six SACs (namely V, Mn, Fe, Mo, Ru, and W atoms embedded into defective BCNTs) can be used as promising candidates for NRR electrocatalysts as their NRR activity is higher than the state-of-the art Ru(0001) catalyst. In particular, single Mo atom supported on defective BCNTs with large tube diameter possesses the highest NRR activity while suppressing the competitive hydrogen evolution reaction, with a low limiting potential of −0.62 V via associative distal path. This work suggests new opportunities for driving NH3 production by carbon-based single-atom electrocatalysts under ambient conditions.  相似文献   

15.
Crystal phase engineering is a powerful strategy for regulating the performance of electrocatalysts towards many electrocatalytic reactions, while its impact on the nitrogen electroreduction has been largely unexplored. Herein, we demonstrate that structurally ordered body-centered cubic (BCC) PdCu nanoparticles can be adopted as active, selective, and stable electrocatalysts for ammonia synthesis. Specifically, the BCC PdCu exhibits excellent activity with a high NH3 yield of 35.7 μg h−1 mg−1cat, Faradaic efficiency of 11.5 %, and high selectivity (no N2H4 is detected) at −0.1 V versus reversible hydrogen electrode, outperforming its counterpart, face-centered cubic (FCC) PdCu, and most reported nitrogen reduction reaction (NRR) electrocatalysts. It also exhibits durable stability for consecutive electrolysis for five cycles. Density functional theory calculation reveals that strong orbital interactions between Pd and neighboring Cu sites in BCC PdCu obtained by structure engineering induces an evident correlation effect for boosting up the Pd 4d electronic activities for efficient NRR catalysis. Our findings open up a new avenue for designing active and stable electrocatalysts towards NRR.  相似文献   

16.
Crystal phase engineering is a powerful strategy for regulating the performance of electrocatalysts towards many electrocatalytic reactions, while its impact on the nitrogen electroreduction has been largely unexplored. Herein, we demonstrate that structurally ordered body‐centered cubic (BCC) PdCu nanoparticles can be adopted as active, selective, and stable electrocatalysts for ammonia synthesis. Specifically, the BCC PdCu exhibits excellent activity with a high NH3 yield of 35.7 μg h?1 mg?1cat, Faradaic efficiency of 11.5 %, and high selectivity (no N2H4 is detected) at ?0.1 V versus reversible hydrogen electrode, outperforming its counterpart, face‐centered cubic (FCC) PdCu, and most reported nitrogen reduction reaction (NRR) electrocatalysts. It also exhibits durable stability for consecutive electrolysis for five cycles. Density functional theory calculation reveals that strong orbital interactions between Pd and neighboring Cu sites in BCC PdCu obtained by structure engineering induces an evident correlation effect for boosting up the Pd 4d electronic activities for efficient NRR catalysis. Our findings open up a new avenue for designing active and stable electrocatalysts towards NRR.  相似文献   

17.
Synthesis and Crystal Structure of Mo2<>NCl8 and Mo3N2Cl11 The reaction of MoCl5 with Cl3VNCl at 140 °C in a sealed glass ampoule yields air sensitive black crystals of the mixed valent molybdenum(V, VI) nitride chloride, Mo2NCl8. It crystallizes in the monoclinic space group P2/c with a = 996.1(1), b = 629.4(1), c = 1780.8(3) pm, β = 101.82(2)°, and Z = 4. The crystal structure consists of dinuclear C2‐symmetrical units [Cl2(N≡)Mo(μ2‐Cl)3Mo(≡N)Cl2] and [Cl4Mo(μ2‐Cl)MoCl4]+, connected in an alternating sequence by asymmetric nitrido bridges Mo≡N‐Mo to form chains. The reaction of Cl3VNCl with MoCl3 at 140 °C affords Mo3N2Cl11, but for the prolonged reaction period, MoNCl3 is observed in addition. Mo3N2Cl11 can also be obtained from MoNCl3 and MoCl5 (2:1) at 140 °C. It forms orthorhombic, black crystals with the space group Pca21 and a = 1256.1(1), b = 1001.9(1), c = 1330.10(5) pm, and Z = 4. The structure contains the same dinuclear units [Cl2(N≡)Mo(μ2‐Cl)3Mo(≡N)Cl2] as in Mo2NCl8, which in this case are connected with MoCl4+ moieties by asymmetric nitrido bridges Mo≡N‐Mo forming chains. In Mo2NCl8 the Mo‐N distances in the nearly linear nitrido bridges are 167.6(2), and 214.8(2) pm, whereas in case of Mo3N2Cl11 two sets of Mo‐N distances of 166, 8(4) and 214, 0(4) pm as well as 166, 9(4) and 211, 9(4) pm are observed.  相似文献   

18.
In the present work, high quality γ‐Mo2N catalysts for ammonia decomposition were successfully synthesized via temperature programmed nitridation of α‐MoO3 nanobelts. The optimal conditions for the synthesis of MoO3 precursors were obtained by using the orthogonal experimental method. The MoO3 precursors and the corresponding fresh and used Mo2N catalysts were characterized by various characterization techniques, including transmission electron microscopy, X‐ray diffraction and N2 adsorption‐desorption. Furthermore, temperature‐ programmed desorption by N2 or NH3 and X‐ray photoelectron spectroscopy analysis were performed to better understand the chemical properties of Mo2N catalysts. The results revealed that Mo2N catalyst has good NH3 adsorption ability and facilitates the dissociation adsorption of N2. Moreover, the morphology and structure of Mo2N catalysts well maintained after the reaction. Therefore, among the three transition metal nitrides (Mo2N, W2N and VN) and some Mo‐based catalysts previously reported, Mo2N catalysts showed very high activity and stability. Nearly 94% conversion of NH3 could be reached at 550°C with the gas hourly space velocity of 22000 cm3?gcat–1?h–1 and no obvious deactivation was observed during a 72 h test.  相似文献   

19.
Molybdenum(II) Halide Clusters with two Alcoholate Ligands: Syntheses and Crystal Structures of (C18H36N2O6Na)2[Mo6Cl12(OCH3)2] and (C18H36N2O6Na)2[Mo6Cl12(OC15H11)2] · 2C4H6O3 . Reaction of Mo6Cl12 with two equivalents of sodium methoxide in the presence of 2,2,2-crypt yields (C18H36N2O6Na)2[Mo6Cl12(OCH3)2] ( 1 ), which can be converted to (C18H36N2O6Na)2[Mo6Cl12(OC15H11)2] · 2C4H6O3 ( 2 ) by metathesis with 9-Anthracenemethanole in propylene carbonate. As confirmed by X-ray single crystal structure determination ( 1 : C2/m, a=25.513(8) Å, b=13.001(3) Å, c=10.128(3) Å, β=100.204(12)°; : C2/c, a=15.580(5) Å, b=22.337(5) Å, c=27.143(8) Å, β=98.756(10)°) the compounds contain anionic cluster units [Mo6ClCl(ORa)2]2? with two alcoholate ligands in terminal trans positions ( 1 : d(Mo—Mo) 2.597(2) Å to 2.610(2) Å, d(Mo—Cli) 2.471(3) Å to 2.493(4) Å, d(Mo—Cla) 2.417(8) Å and 2.427(8) Å, d(Mo—O) 2.006(13) Å; 2 : d(Mo—Mo) 2.599(3) Å to 2.628(3), d(Mo—Cli) 2.468(8) Å to 2.506(7) Å, d(Mo—Cla) 2.444(8) Å and 2.445(7) Å, d(Mo—O) 2.012(19) Å).  相似文献   

20.
The nitrogen reduction reaction (NRR) has become an ideal alternative to the Haber-Bosch process, as NRR possesses, among others, the advantage of operating under ambient conditions and saving energy consumption. The key to efficient NRR is to find a suitable electrocatalyst, which helps to break the strong N≡N bond and improves the reaction selectivity. Molybdenum disulfide (MoS2) as an emerging layered two-dimensional material has attracted a mass of attention in various fields. In this minireview, we summarize the optimization strategies of MoS2-based catalysts which have been developed to improve the weak NRR activity of primitive MoS2. Some theoretical predictions have also been summarized, which can provide direction for optimizing NRR activity of future MoS2-based materials. Finally, an outlook about the optimization of MoS2-based catalysts used in electrochemical N2 fixation are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号