首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以不同Bi/Cl摩尔比例为原料设计合成了一系列BiOCl半导体催化材料。扫描电子显微镜、XRD衍射峰拟合等分析结果显示,Bi/Cl比例的改变对BiOCl的形貌、表面结构、微观电子结构均具有一定的调控作用。以Bi/Cl = 1 : 1为原料合成的BiOCl光催化剂具有最窄的带隙值(Eg=3.18 eV),使得其具有较强的的光响应能力。光催化去除罗丹明B(RhB)结果表明,随着Bi/Cl摩尔比例的减小,BiOCl的催化性能呈现先增强后减弱的趋势。Bi/Cl = 1 : 1样品具有最优的催化活性,源于其较优异的光吸收性能以及特殊的表面特性。光催化机理研究表明,光催化去除RhB的过程中,起作用的活性物质主要为光生电子、空穴以及半导体表面产生的超氧自由基。  相似文献   

2.
《中国化学快报》2022,33(12):5200-5207
The matched energy band structure and efficient carrier separation efficiency are the keys to heterogeneous photocatalytic reactions. A novel organic/inorganic step scheme (S-scheme) heterojunction PDI-Urea/BiOBr composite photocatalyst was constructed by simple solvothermal reaction combined with in-situ growth strategy. The composite photocatalyst not only has high chemical stability, but also can generate and accumulate a large number of active species (h+, ?O2?, ?OH, H2O2). PDI-Urea/BiOBr showed higher photocatalytic activity for the degradation of antibiotic such as ofloxacin (OFLO), tetracycline (TC) and the production of H2O2 in the spectral range of 400–800 nm. The apparent rate constant of 15% PDI-Urea/BiOBr for photocatalytic degradation of TC (or OFLO) was 2.7 (or 2.5) times that of pure BiOBr and 1.7 (or 1.8) times that of pure PDI-Urea. The H2O2 evolution rate of 15% PDI-Urea/BiOBr was 2.5 times that of PDI-Urea and 1.5 times that of BiOBr, respectively. This work has formed a mature S-scheme heterojunction design thought and method, which offers new visions for the development of heterogeneous photocatalysts.  相似文献   

3.

In this paper, we report the synthesis of the BiOBr/BiOCl/PANI ternary nanocomposite using a simple co-precipitation method. The modified photocatalyst produced was characterized by the FT-IR, FE-SEM equipped with EDS (as a Map), TEM, XRD, PL, Raman, and UV–Vis DRS analytical techniques. The synergetic effect of PANI and surface defects in nanoplates can prolong the recombination rate of photo-generated charge carriers. Thus, photocatalytic and photoelectrochemical activities of samples have been studied. Then, the methyl orange (MO) degradation performance of PANI/BiOBr and BiOBr/BiOCl/PANI was investigated under visible light irradiation. The lamp used to simulate sunlight in this photocatalytic study process was power down white light (5-W LED), less reported. The results got exhibited that the as-prepared BiOBr/BiOCl/PANI (90:10, Bi:PANI) nanocomposite showed a higher photocatalytic efficiency. Based on the scavenger tests, ·O2? played a significant role in the degradation of MO. The connection between BiOBr, BiOCl, and PANI improved photocatalytic activity, which enhanced migration rate of the photo-generated electrons besides limiting the recombination of photo-generated electron–hole pairs.

  相似文献   

4.
Magnetically recoverable Fe3O4/BiOCl nanocomposite photocatalysts were fabricated by a simple chemical coprecipitation method at room temperature. The amount of Fe3O4 incorporated into BiOCl was varied from 0 to 20 wt%. The as-synthesized samples were characterized by X-ray diffraction, transmission electron microscopy, energy dispersive spectroscopy, UV–Vis diffuse reflectance spectroscopy, and vibrating sample magnetometer. The obtained results show that the as-synthesized samples mainly contain both crystalline phases (Fe3O4 and BiOCl) and are composed of flower-like nanostructures. Compared to UV light-responsive BiOCl, all the nanocomposite photocatalysts show a strong light absorbance in the range of 250–800 nm, demonstrating that the Fe3O4/BiOCl nanocomposites can respond to visible as well as UV light. Moreover, visible light absorbance was increased with the increase in the Fe3O4 amount in the composite. The photocatalytic activity of nanocomposite photocatalysts was evaluated by the photodegradation of Rhodamine B (RhB) over the samples under visible light irradiation. The 10 wt% Fe3O4/BiOCl nanocomposite photocatalyst shows the highest photocatalytic efficiency among the samples. The Fe3O4/BiOCl nanocomposite photocatalyst was stable under visible light irradiation to efficiently degrade RhB molecules after five cycles and could be easily recovered with a magnet after each cycle.  相似文献   

5.
Taking a colloidal monolayer floating on the surface of a precursor solution as template, free-standing CdS/Cd composites and pure CdS (CdS-based) ordered porous films had been prepared by a temperature-assisted photochemical strategy. After irradiation with UV-light and heat treatment, the films formed hemi-spherical pores due to the preferable deposition of CdS and Cd onto the PS spheres during the photochemical and interfacial reactions. When the temperature increased from 15 to 60°C, the air/water interface gradually changed into a vapor/water interface on the surface of the solution, resulting in variations of the final compositions. The optical properties of the films were hence changed. Because of the free-standing characteristic, the ordered porous films were first transferred on surface of polluted solutions as photocatalysts, which was a new mode in application of photocatalysts. The photocatalytic activities of films showed regular variations with the compositions in photodegradation of Rhodamine B. This method provides a simple route for tuning the properties of porous films through control of its composition and a flexible application of films on any surface.  相似文献   

6.
Cadmium sulfide/titanium dioxide (CdS/TiO2) composite films were grown on glass by the chemical bath deposition (DBQ) and sol-gel/dip coating methods, respectively, in order to increase the photocatalytic activity of TiO2 in photodegradation processes. The influence of the CdS deposition time on the morphology, optical absorption, and phononic modes of the composites were examined. Scanning electron microscopy (SEM) images showed clearly the CdS deposit on the TiO2 surface. The absorbance spectra indicated that the absorption of composites depends on the CdS deposition time and the absorption edges are shifted to the visible range. Micro Raman spectra exhibited the phonons associated with the TiO2 anatase and the longitudinal optic (LO) phonon of CdS whose intensity increases with the CdS deposition time. Photodegradation of methylene blue (MB) under visible light irradiation was observed in all films and the results were compared with those obtained with TiO2 films. The decomposition is higher for the composite with the CdS deposition time of 15 min. This optimal deposition time allows maximal enhancement of the charge carriers transfer to TiO2 involved in the photocatalysis. No signal associated with cadmium was detected by the atomic absorption spectroscopy (AAS), which means that the CdS photocorrosion does not occur since trap centers such as OH-Cd-S and Cl?, which trap holes and inhibit the photocorrosion, are produced during the growth process.  相似文献   

7.
Zheng  Ming  Gao  Bing  Tang  Suwen  Zhu  Min  Tang  Liang  Wu  Minghong 《Catalysis Surveys from Asia》2022,26(3):174-182

Zinc molybdate (ZnMoO4), a layer perovskite material, has the advantages of high stability, excellent optical and charge properties. However, its high band gap and high electron–hole recombination efficiency limit its application in the photocatalytic reduction field like hydrogen production. In this study, we used CdS as a co-catalyst and successfully prepared CdS/ZnMoO4 composite photocatalysts with different loadings. The hydrogen evolution rate of CdS/ZnMoO4 reached 530.2 µmol h?1 g?1, which was approximately 11 and 100 times more than rates of pure CdS and ZnMoO4 under the same conditions, respectively. It is the presence of CdS that contributed to this improved performance, which acted as an electron acceptor to separate electrons and holes. Besides, a reasonable mechanism was provided based on photoelectrochemical characterizations. CdS loading greatly improved the hydrogen evolution performance of ZnMoO4 under visible light, providing a direction to improving the performance of perovskite based photocatalysts.

  相似文献   

8.
分别以乙二醇/去离子水为溶剂,通过溶剂热/水热法分别制备了具有不同主导晶面的BiOIO3/{110}BiOCl和BiOIO3/{001}BiOCl异质结。采用X射线衍射、扫描电子显微镜、能量色散谱和紫外可见漫反射光谱对制备的BiOIO3/BiOCl光催化剂进行了表征。在可见光照射下,通过对罗丹明 B和苯酚水溶液的光催化降解,考察了 BiOIO3/BiOCl异质结的光催化活性。结果显示25% BiOIO3/{110}BiOCl异质结具有最高的光催化效率。BiOIO3/{110}BiOCl较好的光催化性能是由于其在可见光区较强的光吸收,以及异质结结构和BiOCl所具有的(110)主导晶面有利于光生载流子的分离。超氧自由基(·O2-)和空穴(h+)是光催化过程中的主要活性物质。此外,根据实验结果探讨了光催化性能增强的机理。  相似文献   

9.
Composite photocatalyst films have been fabricated by depositing BiVO4 upon TiO2 via a sequential ionic layer adsorption reaction (SILAR) method. The photocatalytic materials were investigated by XRD, TEM, UV/Vis diffuse reflectance, inductively coupled plasma optical emission spectrometry (ICP‐OES), XPS, photoluminescence and Mott–Schottky analyses. SILAR processing was found to deposit monoclinic‐scheelite BiVO4 nanoparticles onto the surface, giving successive improvements in the films′ visible light harvesting. Electrochemical and valence band XPS studies revealed that the prepared heterojunctions have a type II band structure, with the BiVO4 conduction band and valence band lying cathodically shifted from those of TiO2. The photocatalytic activity of the films was measured by the decolourisation of the dye rhodamine 6G using λ>400 nm visible light. It was found that five SILAR cycles was optimal, with a pseudo‐first‐order rate constant of 0.004 min?1. As a reference material, the same SILAR modification has been made to an inactive wide‐band‐gap ZrO2 film, where the mismatch of conduction and valence band energies disallows charge separation. The photocatalytic activity of the BiVO4–ZrO2 system was found to be significantly reduced, highlighting the importance of charge separation across the interface. The mechanism of action of the photocatalysts has also been investigated, in particular the effect of self‐sensitisation by the model organic dye and the ability of the dye to inject electrons into the photocatalyst′s conduction band.  相似文献   

10.
Cocatalyst plays an important role in efficient charge transfer and separation for photocatalysis. Herein, a MoS2/CdS photocatalyst with MoS2 as cocatalyst was designed by using Mo-MOF and Cd-MOF as precursors. Due to the existence of rich sulfur vacancies and 1T phase, MoS2 shows strong charge capture and transport ability. The photo-generated electrons on conduction band (CB) can be bound by the sulfur vacancy of CdS and effectively transported to MoS2 through the compact interface between the CdS nanoparticles and 2D large-scale MoS2. The optimal photocatalyst 1 %MoS2/CdS exhibited dramatically improved photocatalytic hydrogen production activity, which is 28 times that of pristine CdS and even about 2 times that of 1 %Pt/CdS with same loading amount of noble metal Pt. This work highlights the role of Mo-MOF derived MoS2 with 1T-2H phases as a sustainable and prospective candidate of cocatalyst for improving charge separation and photocatalytic stability of MoS2/CdS composites.  相似文献   

11.
Bismuth oxychloride (BiOCl), although it has exhibited intensely potential used in photocatalyst for environmental remediation, owns wide bandgap and the fast photocharge recombination that limits its effective application. Doping BiOCl used in metal and non-metal elements simultaneously, as a feasible strategy in designing novel visible-light photocatalysts, was conductive to effectively overcome the as-above defects. The present work constructed S-Mo co-doped BiOCl-- with abundant reactive sites via one-pot hydrothermal method. The as-prepared S–Mo co-doped BiOCl sample presents the best-visible light-driven photodegradation performance, and its kinetic constant (k) is about 16.8 times (for rhodamine B) and 6.5 times (for tetracycline hydrochloride) higher than that of pure BiOCl, respectively. By contrast, S-Mo co-dopant induced the decrease of nanosheets size and endowed the large specific surface areas, which favors the increased reactive sites. Further analysis with the aid of experiments and density function theory calculations indicated that the intermediate level induced by S 2p orbitals could narrow the bandgap and promote the excitation of electron from conduction band to valance band via providing the middle springboard on the one hand, and the Mo energy states was conducive to promote the separation of charge carriers by acted as the acceptor for the photoinduced electrons on the other hand. Consequently, the potential origin of the improved visible-light-driven performance lies in the more superoxide radicals for oxidizing organic pollutants caused by the simultaneous enhancement of visible light absorption as well as charge separation resulted from the further optimization of energy band structure that associated with the doping energy level of S-Mo co-doping in BiOCl. This work demonstrated that S and Mo co-doping BiOCl is of highly promising candidate for the further progress of environmental remediation.  相似文献   

12.
采用一步电化学法在金属 Bi板上成功制备了 Bi OCl0.5Br0.5/Bi PO4双层异质结薄膜,并通过多种表征手段对薄膜的晶型结构、元素组成及化合价、形貌和尺寸特征、吸光性能和荧光强度进行了表征。结果表明,制备得到的复合薄膜呈现出上层为梭子状的 Bi PO4颗粒层分散在下层为 Bi OCl0.5Br0.5固溶体层的双层结构。这样的双层膜排列顺序使得光生电子和空穴在不同组分之间的界面电场作用下分别向薄膜两侧流动,促进光致载流子的分离,提高了 Bi OCl0.5Br0.5/Bi PO4复合薄膜的光催化活性。活性测试结果表明,在模拟太阳光照射 120 min 后,Bi OCl0.5Br0.5/Bi PO4复合薄膜对苯酚的降解率达到了 99.97%,是相同条件下制备的 Bi OCl/Bi PO4和 Bi O...  相似文献   

13.
Heterojunction BiOI/SnO2 nanocomposites have been facilely synthesized by using successive ionic layer adsorption and reaction (SILAR) and a hydrothermal method, and polyethylene terephthalate (PET) nanofibers (NFs) were utilized as a photocatalyst carrier to support the BiOI/SnO2 nanocomposites. PET/BiOI/SnO2 NFs displayed excellent photocatalytic ability towards methyl orange (MO) and tetracycline (TC) under visible light irradiation. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were employed to investigate the morphology, crystal structure and chemical state of the PET/BiOI/SnO2 nanofibers. Photoluminescence (PL) and active species trapping experiments indicated that photoinduced charge separation promoted the formation of holes (h+) and superoxide radicals (•O2-). Moreover, a photodegradation mechanism was proposed to illustrate that the formation of a Fermi level equilibrium state between semiconductors accelerated charge separation in the semiconductor. This study is meaningful for providing new inspiration to design and fabricate novel heterostructure photocatalysts with enhanced photocatalytic activity.  相似文献   

14.
CdS-ZIF-8 photocatalyst was prepared by introducing a ZnO-rich zeolitic imidazolate framework-8 (ZIF-8) during synthesis of CdS by a facile solvothermal method, using ZnO-rich ZIF-8 and cadmium acetate [Cd(Ac)2] as support and CdS precursor, respectively. The introduction of ZnO-rich ZIF-8 and the photodegradation performance of the catalyst for methylene blue (MB) organic dye were systemically investigated. The CdS-ZIF-8 catalysts were also characterized using X-ray diffraction analysis, transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy, N2 adsorption–desorption measurements, Fourier-transform infrared (FT-IR) spectroscopy, ultraviolet–visible (UV–Vis) diffuse reflectance spectroscopy (DRS), and photoluminescence spectroscopy. The results indicated that CdS-ZIF-8 contained ZIF-8, CdS, and ZnO phases. The CdS in CdS-ZIF-8 catalysts exhibited smaller particle size compared with pure CdS. Furthermore, compared with pure CdS, CdS-ZIF-8-30 with introduction of ZnO-rich ZIF-8 exhibited higher surface area (77.3 m2/g) and pore volume (0.103 cm3/g). EDX and FT-IR results suggested that a CdS/ZnO heterostructure was formed, which effectively reduced recombination of photogenerated electron–hole pairs. Radical trapping experimental data and band edge position analysis revealed that Z-scheme behavior also played a role in the system. Relying on the combined effect of their structure, the photodegradation efficiency of all the CdS-ZIF-8 catalysts was obviously superior to that of pure CdS for degradation of MB under visible-light irradiation. Photodegradation results illustrated that CdS-ZIF-8 with introduction of 30 mg ZnO-rich ZIF-8 (denoted as CdS-ZIF-8-30) exhibited optimal photodegradation activity.  相似文献   

15.
Nanoscale anatase TiO2 single crystals were successfully synthesized using three kinds of activated carbon (AC) templates through a simple sol–gel method. The optimal photocatalyst (T‐WOAC) was obtained using wood‐based AC template. X‐ray diffraction, transmission electron microscopy and Brunauer–Emmett–Teller analyses revealed that T‐WOAC possessed a small crystallite size of 8.7 nm and a clear mesoporous structure. The photocatalytic properties of samples were then evaluated through photodegradation of crystal violet (CV). Results implied that the photocatalysts prepared using the AC templates exhibited superior photocatalytic activity to that of the original TiO2. This enhancement may be due to the small crystallite size, large specific surface area and pore volume of the catalysts prepared with ACs. T‐WOAC showed high photocatalytic activity, CV degradation of 99.01% after 120 min of irradiation and k = 0.03914 min?1, which is 3.9 times higher than that of the original TiO2 (k = 0.00994 min?1). This result can be mainly attributed to the application of WOAC with moderate specific surface area and pore volume to produce T‐WOAC. Alkaline conditions benefitted the photodegradation of CV over photocatalysts. This work proposes a possible degradation mechanism of CV and indicates that the fabricated photocatalysts can be used to effectively remove CV from aqueous solutions.  相似文献   

16.
光催化技术作为一种绿色的环境修复方法而备受关注,它直接利用太阳光作为能源,可有效地降解有机污染物.铋系化合物具有化学稳定性强、抑制光腐蚀、无毒和来源广泛等优点,被认为是一种环境友好的光催化剂,广泛用于降解染料、苯酚和其他有机污染物.BiOCl具有独特的内部结构,可形成内电场促进电子和空穴的移动,抑制其复合.但是BiOCl本身带隙能过大,只能被紫外光激发,对光的利用率较低,限制了其在环境治理中的应用.近两年来发现,m-Bi2O4带隙能小,可吸收大波长的可见光,催化性能好.为充分发挥m-Bi2O4的优异性质,改善BiOCl的性能,本文将BiOCl与m-Bi2O4复合制得新型催化剂,降低催化剂的带隙能,增强对光的吸收,提高量子效率,促进光生载流子的分离,抑制电子-空穴复合,从而提高催化剂性能,加速降解反应进程.本文通过离子刻蚀法制备具有p-n异质结的m-Bi2O4/BiOCl复合催化剂,通过调节HCl的加入量制得不同比例的催化剂,并考察了其在可见光下催化降解MO(甲基橙)的性能.结果表明,m-Bi2O4/BiOCl复合催化剂在可见光下表现出优异的光催化降解MO和四环素的性能,反应10内min可降解95%的MO,反应150 min内四环素的降解率为85.5%;该复合催化剂对MO和四环素的光降解效率分别是纯BiOCl的52.3和4.9倍.活性自由基捕获实验表明,空穴在光催化降解过程中起最主要的作用,其次是超氧自由基,羟基自由基对降解反应也起到一定的作用.采用XRD,SEM,EDS,TEM,SAED,FT-IR,Raman,XPS,BET,UV-vis和光电流等表征方法分析了催化剂的结构、形貌、化学组成、元素价态、孔结构、带隙能、光学性质和载流子复合效率.结果表明,与BiOCl的斜四方体相比,m-Bi2O4/BiOCl复合催化剂呈现纳米片状结构,氯离子进入晶格的内部,颜色也由BiOCl原来的深褐色变为黄色.m-Bi2O4/BiOCl为介孔结构,比表面积为112.90 m2/g,其吸收波长红移,由紫外光扩展至可见光区域,带隙能也由3.2降低为1.87 eV,能带弯曲形成p-n异质结,提高了电子-空穴的转移效率,抑制其复合;m-Bi2O4/BiOCl的光电流密度高于m-Bi2O4和BiOCl,电子-空穴的分离效率更高,因而其催化性能更优越.  相似文献   

17.
Recently, graphitic carbon nitride (CN) has been widely investigated for solar energy conversion through water splitting, but its low photocatalytic activity needs to be further improved and optimized. Herein, S/K co‐doped CN photocatalysts have been fabricated by condensation of thiourea and dithiooxamide followed by post‐treatment in molten salt. As evidenced by XRD patterns and UV–vis DRS plots, the engineering crystalline and electronic structure of all as‐prepared samples have been explored through tailoring the mass ratio of thiourea and dithiooxamide as well as ratio of molten salt/the precursor. After optimization, the as‐prepared S/K co‐doped CN photocatalysts with needle‐like nanorods structure exhibit excellent hydrogen evolution rate of 1962.10 μmol?1 g?1 h?1. While its photocatalytic activity is lower than that of pure CN by molten salt treatment (K‐doped CN) (2066.40 μmol?1 g?1 h?1), which results from that the K content of S/K co‐doped CN photocatalyst is lower than that of K‐doped CN. Moreover, compared with K‐doped CN, S/K co‐doped CN photocatalyst possesses higher photocatalytic performance when irradiated by a light source (λ > 520 nm). This might be ascribed to the fact that the introduction of sulfur can expand light absorption region (λ > 520 nm), whereas K cannot improve light absorption of CN in this wavelength region. Furthermore, DFT calculation reveals that both S and K atoms can offer more electrons to band gap, leading to the formation of metallic‐character band structure. In addition, K atom can intercalate in the interlayer of CN and bridge the adjacent two layers, leading to the formation of charge delivery channels. These results demonstrate that S/K co‐doped CN photocatalysts facilitate the separation and transport of photogenerated charge carries, resulting in the efficient photocatalytic activity for hydrogen evolution. Besides, a competition between sulfur and potassium atom during the synthesis process is also discussed in details.  相似文献   

18.
通过一步热解法合成了一种新的复合光催化剂C@CdS/埃洛石纳米管(HNTs). 用扫描电镜(SEM),X射线能谱(EDS),透射电镜(TEM),X 射线衍射(XRD),紫外-可见漫反射光谱(UV-Vis DRS),傅里叶变换红外(FT-IR)光谱,比表面积和拉曼光谱(RS)对材料进行表征. 利用可见光下降解四环素探究了C@CdS/HNTs 的光催化活性. 结果表明,所制备的不同热解温度的样品中,400 ℃热解温度下的样品降解四环素效果最好,可见光照射60 min 降解率能达到86%. 此外,得益于碳层、CdS和HNTs 的共同作用,光催化剂展示了很好的稳定性. 放置一年对催化活性没有任何影响,并且经过三次循环实验,光催化剂活性没有很大变化. 最后讨论了光催化剂的制备机理,并且对光催化降解过程的中间产物进行了分析.  相似文献   

19.
《中国化学快报》2022,33(9):4385-4388
The BiOCl (BOC) synthesized by the water bath heating method was treated with sodium borohydride (NaBH4) to introduce oxygen vacancies (OVs). At the same time, Au nanoparticles were loaded to prepare a series of Au/BiOCl samples with different ratios. OVs and Au nanoparticles can promote the light absorption of host photocatalyst in the visible region. The calculated work function of BiOCl and Au can verify the existence of Ohmic contact between the interface of them, which is conducive to the separation of charge carriers. Through a series of photoelectric tests, it was verified experimentally that the separation of charge carriers is indeed enhanced. The high-energy hot electrons produced by Au under the surface plasmon resonance (SPR) effect can increase the counts of electrons to participate in the CO2 reduction reaction. Especially for 1.0%-Au/BOC, the yields of CO can reach 43.16 µmol g?1 h?1, which is 6.6 times more than that of BOC. Therefore, loading precious metal on semiconductors is an effective strategy to promote the photocatalytic performance of CO2 reduction reactions.  相似文献   

20.
Willow branch-shaped MoS2/CdS heterojunctions are successfully synthesized for the first time by a facile one-pot hydrothermal method. The as-prepared samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, nitrogen adsorption-desorption measurements, diffuse reflectance spectroscopy, and photoelectrochemical and photoluminescence spectroscopy tests. The photocatalytic hydrogen evolution activities of the samples were evaluated under visible light irradiation. The resulting MoS2/CdS heterojunctions exhibit a much improved photocatalytic hydrogen evolution activity than that obtained with CdS and MoS2. In particular, the optimized MC-5 (5 at.% MoS2/CdS) photocatalyst achieved the highest hydrogen production rate of 250.8 μmol h-1, which is 28 times higher than that of pristine CdS. The apparent quantum efficiency (AQE) at 420 nm was 3.66%. Further detailed characterizations revealed that the enhanced photocatalytic activity of the MoS2/CdS heterojunctions could be attributed to the efficient transfer and separation of photogenerated charge carriers resulting from the core-shell structure and the close contact between MoS2 nanosheets and CdS single-crystal nanorods, as well as to increased visible light absorption. A tentative mechanism for photocatalytic H2 evolution by MoS2/CdS heterojunctions was proposed. This work will open up new opportunities for developing more efficient photocatalysts for water splitting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号