首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Zinc metal battery (ZMB) is promising as the next generation of energy storage system, but challenges relating to dendrites and corrosion of the zinc anode are restricting its practical application. Here, to stabilize Zn anode, we report a controlled electrolytic method for a monolithic solid-electrolyte interphase (SEI) via a high dipole moment solvent dimethyl methylphosphonate (DMMP). The DMMP-based electrolytes can generate a homogeneous and robust phosphate SEI (Zn3(PO4)2 and ZnP2O6). Benefiting from the protecting impact of this in situ monolithic SEI, the zinc electrode exhibits long-term cycling of 4700 h and a high Coulombic efficiency 99.89 % in Zn|Zn and Zn|Cu cell, respectively. The full V2O5|Zn battery with DMMP-H2O hybrid electrolyte exhibits a high capacity retention of 82.2 % following 4000 cycles under 5 A g−1. The first success in constructing the monolithic phosphate SEI will open a new avenue in electrolyte design for highly reversible and stable Zn metal anodes.  相似文献   

2.
《中国化学快报》2023,34(6):107703
Aqueous zinc-ion batteries (ZIBs) has been regarded as a promising energy storage system for large-scale application due to the advantages of low cost and high safety. However, the growth of Zn dendrite, hydrogen evolution and passivation issues induce the poor electrochemical performance of ZIBs. Herein, a Na3Zr2Si2PO12 (NZSP) protection layer with high ionic conductivity of 2.94 mS/cm on Zn metal anode was fabricated by drop casting approach. The protection layer prevents Zn dendrites formation, hydrogen evolution as well as passivation, and facilitates a fast Zn2+ transport. As a result, the symmetric cells based on NZSP-coated Zn show a stable cycling over 1360 h at 0.5 mA/cm2 with 0.5 mAh/cm2 and 1000 h even at a high current density of 5 mA/cm2 with 2 mAh/cm2. Moreover, the full cells combined with V2O5-based cathode displays high capacities and high rate capability. This work offers a facile and effective approach to stabilizing Zn metal anode for enhanced ZIBs.  相似文献   

3.
Rechargeable batteries have been used to power various electric devices and store energy from renewables, but their toxic components (namely, electrode materials, electrolyte, and separator) generally cause serious environment issues when disused. Such toxicity characteristic makes them difficult to power future wearable electronic devices. Now an environmentally friendly and highly safe rechargeable battery, based on a pyrene‐4,5,9,10‐tetraone (PTO) cathode and zinc anode in mild aqueous electrolyte is presented. The PTO‐cathode shows a high specific capacity (336 mAh g?1) for Zn2+ storage with fast kinetics and high reversibility. Thus, the PTO//Zn full cell exhibits a high energy density (186.7 Wh kg?1), supercapacitor‐like power behavior and long‐term lifespan (over 1000 cycles). Moreover, a belt‐shaped PTO//Zn battery with robust mechanical durability and remarkable flexibility is first fabricated to clarify its potential application in wearable electronic devices.  相似文献   

4.
The rampant dendrites and hydrogen evolution reaction (HER) resulting from the turbulent interfacial evolution at the anode/electrolyte are the main culprits of short lifespan and low Coulombic efficiency of Zn metal batteries. In this work, a versatile protective coating with excellent zincophilic and amphoteric features is constructed on the surface of Zn metal (ZP@Zn) as dendrite-free anodes. This kind of protective coating possesses the advantages of reversible proton storage and rapid desolvation kinetics, thereby mitigating the HER and facilitating homogeneous nucleation concomitantly. Furthermore, the space charge polarization effect promotes charge redistribution to achieve uniform Zn deposition. Accordingly, the ZP@Zn symmetric cell manifests excellent reversibility at an ultrahigh cumulative plating capacity of 4700 mAh cm−2 and stable cycling at 80 % depth of discharge (DOD). The ZP@Zn//V6O13 pouch cell also reveals superior cycling stability with a high capacity of 326.6 mAh g−1.  相似文献   

5.
Zinc (Zn) metal anode suffers from uncontrollable Zn dendrites and parasitic side reactions at the interface, which restrict the practical application of aqueous rechargeable zinc batteries (ARZBs). Herein, an amphoteric cellulose-based double-network is introduced as hydrogel electrolyte to overcome these obstacles. On one hand, the amphoteric groups build anion/cation transport channels to regulate electro-deposition behavior on Zn (002) crystal plane enabled by homogenizing Zn2+ ions flux. On the other hand, the strong bonding between negatively charged carboxyl groups and Zn2+ ions promote the desolvation process of [Zn(H2O)6]2+ to eliminate side reactions. Based on the above two functions, the hydrogel electrolyte enables an ultra-stable cycling with a cumulative capacity of 7 Ah cm−2 at 20 mA cm−2/20 mAh cm−2 for Zn||Zn cell. This work provides significant concepts for developing hydrogel electrolytes to realize stable anode for high-performance ARZBs.  相似文献   

6.
Rechargeable aqueous zinc batteries (RAZB) have been re-evaluated because of the superiority in addressing safety and cost concerns. Nonetheless, the limited lifespan arising from dendritic electrodeposition of metallic Zn hinders their further development. Herein, a metal–organic framework (MOF) was constructed as front surface layer to maintain a super-saturated electrolyte layer on the Zn anode. Raman spectroscopy indicated that the highly coordinated ion complexes migrating through the MOF channels were different from the solvation structure in bulk electrolyte. Benefiting from the unique super-saturated front surface, symmetric Zn cells survived up to 3000 hours at 0.5 mA cm−2, near 55-times that of bare Zn anodes. Moreover, aqueous MnO2–Zn batteries delivered a reversible capacity of 180.3 mAh g−1 and maintained a high capacity retention of 88.9 % after 600 cycles with MnO2 mass loading up to 4.2 mg cm−2.  相似文献   

7.
Metallic zinc (Zn) is considered as one of the most attractive anode materials for the post-lithium metal battery systems owing to the high theoretical capacity, low cost, and intrinsic safety. However, the Zn dendrites and parasitic side reaction impede its application. Herein, we propose a new principle of regulating p-band center of metal oxide protective coating to balance Zn adsorption energy and migration energy barrier for effective Zn deposition and stripping. Experimental results and theoretical calculations indicate that benefiting from the uniform zincophilic nucleation sites and fast Zn transport on indium tin oxide (ITO), highly stable and reversible Zn anode can be achieved. As a result, the I−Zn symmetrical cell achieves highly reversible Zn deposition/stripping with an extremely low overpotential of 9 mV and a superior lifespan over 4000 h. The Cu/I−Zn asymmetrical cell exhibits a long lifetime of over 4000 cycles with high average coulombic efficiency of 99.9 %. Furthermore, the assembled I−Zn/AC full cell exhibits an excellent lifetime for 70000 cycles with nearly 100 % capacity retention. This work provides a general strategy and new insight for the construction of efficient Zn anode protection layer.  相似文献   

8.
The high thermodynamic instability and side reactions of Zn-metal anode (ZMA), especially at high current densities, greatly impede the commercialization of aqueous zinc-ion batteries (AZIBs). Herein, a fluorine-rich double protective layer strategy is proposed to obtain the high reversibility of AZIBs through the introduction of a versatile tetradecafluorononane-1,9-diol (TDFND) additive in aqueous electrolyte. TDFND molecule with large adsorption energy (−1.51 eV) preferentially absorbs on the Zn anode surface to form a Zn(OR)2 (R=−CH2−(CF2)7−CH2−) cross-linking complex network, which balances space electric field and controls the Zn2+ ion flux, thus enabling the uniform and compact deposition of Zn (002) crystal planes. Meanwhile, TDFND with low Lowest unoccupied molecular orbital (LUMO, 0.10 eV) energy level is priorly decomposed to regulate the interfacial chemistry of ZMA by building a ZnF2-rich solid electrode/electrolyte interface (SEI) layer. It is found that a 14 nm-thick SEI layer delivers excellent structural integrity to suppress parasitic reactions by blocking the direct contact of active water and ZMA. Consequently, the Zn electrode exhibits a superior cycling life over 430 h at 10 mA cm−2 and a high average Coulombic efficiency of 99.8 % at 5 mA cm−2. Furthermore, a 68 mAh pouch cell delivers 80.3 % capacity retention for 1000 cycles.  相似文献   

9.
Zinc-ion batteries(ZIBs), in particular quasi-solid-state ZIBs, occupy a crucial position in the field of energy storage devices owing to the superiorities of abundant zinc reserve, low cost, high safety and high theoretical capacity of zinc anode. However, as divalent Zn2+ions experience strong electrostatic interactions when intercalating into the cathode materials, which poses challenges to the structural stability and higher demand in Zn2+ions diffusion kinetics of the ...  相似文献   

10.
Rechargeable aqueous zinc batteries (RAZB) have been re‐evaluated because of the superiority in addressing safety and cost concerns. Nonetheless, the limited lifespan arising from dendritic electrodeposition of metallic Zn hinders their further development. Herein, a metal–organic framework (MOF) was constructed as front surface layer to maintain a super‐saturated electrolyte layer on the Zn anode. Raman spectroscopy indicated that the highly coordinated ion complexes migrating through the MOF channels were different from the solvation structure in bulk electrolyte. Benefiting from the unique super‐saturated front surface, symmetric Zn cells survived up to 3000 hours at 0.5 mA cm?2, near 55‐times that of bare Zn anodes. Moreover, aqueous MnO2–Zn batteries delivered a reversible capacity of 180.3 mAh g?1 and maintained a high capacity retention of 88.9 % after 600 cycles with MnO2 mass loading up to 4.2 mg cm?2.  相似文献   

11.
Aqueous zinc (Zn) batteries (AZBs) are widely considered as a promising candidate for next-generation energy storage owing to their excellent safety features. However, the application of a Zn anode is hindered by severe dendrite formation and side reactions. Herein, an interfacial bridged organic–inorganic hybrid protection layer (Nafion-Zn-X) is developed by complexing inorganic Zn-X zeolite nanoparticles with Nafion, which shifts ion transport from channel transport in Nafion to a hopping mechanism in the organic–inorganic interface. This unique organic–inorganic structure is found to effectively suppress dendrite growth and side reactions of the Zn anode. Consequently, the Zn@Nafion-Zn-X composite anode delivers high coulombic efficiency (ca. 97 %), deep Zn plating/stripping (10 mAh cm−2), and long cycle life (over 10 000 cycles). By tackling the intrinsic chemical/electrochemical issues, the proposed strategy provides a versatile remedy for the limited cycle life of the Zn anode.  相似文献   

12.
Zinc-ion batteries are regarded as an extremely promising candidate for large-scale energy storage equipment due to the inexpensive ingredients and high safety. However, dendrite growth and side reactions occur in the Zn anode, which lead to exceedingly low coulombic efficiency (CE) and poor cycling stability. In this work, we propose a strategy of a conductive/insulating bi-functional coating layer (CIBL) for stable Zn metal anodes. Porous Ag nanowires (NWs) coating as a conductive layer effectively reduces the nuclear barrier and contains Zn2+ deposition in a certain space. Polyimide (PI) coatings as insulating layer implement a shunting effect on Zn2+, which could reduce the differential concentration on the Zn surface and induce uniform deposition of Zn2+. Therefore, the CIBL−Zn//CIBL−Zn battery achieves stable plating/stripping of over 1300 h at 1 mA cm−2. The CE of CIBL−Zn//CIBL−Zn battery maintains at 99.2 % even after 1000 cycles. Moreover, the CIBL−Zn//V2O5 battery exhibits a capacity of nearly 289.2 mA h g−1 at 5 A g−1 after 3000 cycles and no sign of capacity degradation is found, which further demonstrate the feasibility of this strategy in practical application.  相似文献   

13.
Aqueous zinc (Zn) batteries (AZBs) are widely considered as a promising candidate for next‐generation energy storage owing to their excellent safety features. However, the application of a Zn anode is hindered by severe dendrite formation and side reactions. Herein, an interfacial bridged organic–inorganic hybrid protection layer (Nafion‐Zn‐X) is developed by complexing inorganic Zn‐X zeolite nanoparticles with Nafion, which shifts ion transport from channel transport in Nafion to a hopping mechanism in the organic–inorganic interface. This unique organic–inorganic structure is found to effectively suppress dendrite growth and side reactions of the Zn anode. Consequently, the Zn@Nafion‐Zn‐X composite anode delivers high coulombic efficiency (ca. 97 %), deep Zn plating/stripping (10 mAh cm?2), and long cycle life (over 10 000 cycles). By tackling the intrinsic chemical/electrochemical issues, the proposed strategy provides a versatile remedy for the limited cycle life of the Zn anode.  相似文献   

14.
Rechargeable aqueous batteries are promising energy storage devices because of their high safety and low cost. However, their energy densities are generally unsatisfactory due to the limited capacities of ion-inserted electrode materials, prohibiting their widespread applications. Herein, a high-energy aqueous all-sulfur battery was constructed via matching S/Cu2S and S/CaSx redox couples. In such batteries, both cathodes and anodes undergo the conversion reaction between sulfur/metal sulfides redox couples, which display high specific capacities and rational electrode potential difference. Furthermore, during the charge/discharge process, the simultaneous redox of Cu2+ ion charge-carriers also takes place and contributes to a more two-electron transfer, which doubles the capacity of cathodes. As a result, the assembled aqueous all-sulfur batteries deliver a high discharge capacity of 447 mAh g−1 based on total mass of sulfur in cathode and anode at 0.1 A g−1, contributing to an enhanced energy density of 393 Wh kg−1. This work will widen the scope for the design of high-energy aqueous batteries.  相似文献   

15.
Cost‐effective aqueous rechargeable batteries are attractive alternatives to non‐aqueous cells for stationary grid energy storage. Among different aqueous cells, zinc‐ion batteries (ZIBs), based on Zn2+ intercalation chemistry, stand out as they can employ high‐capacity Zn metal as the anode material. Herein, we report a layered calcium vanadium oxide bronze as the cathode material for aqueous Zn batteries. For the storage of the Zn2+ ions in the aqueous electrolyte, we demonstrate that the calcium‐based bronze structure can deliver a high capacity of 340 mA h g?1 at 0.2 C, good rate capability, and very long cycling life (96 % retention after 3000 cycles at 80 C). Further, we investigate the Zn2+ storage mechanism, and the corresponding electrochemical kinetics in this bronze cathode. Finally, we show that our Zn cell delivers an energy density of 267 W h kg?1 at a power density of 53.4 W kg?1.  相似文献   

16.
Aqueous zinc-ion batteries (AZBs) show promises for large-scale energy storage. However, the zinc utilization rate (ZUR) is generally low due to side reactions in the aqueous electrolyte caused by the active water molecules. Here, we design a novel solvation structure in the electrolyte by introduction of sulfolane (SL). Theoretical calculations, molecular dynamics simulations and experimental tests show that SL remodels the primary solvation shell of Zn2+, which significantly reduces the side reactions of Zn anode and achieves high ZUR under large capacities. Specifically, the symmetric and asymmetric cells could achieve a maximum of ∼96 % ZUR at an areal capacity of 24 mAh cm−2. In a ZUR of ∼67 %, the developed Zn−V2O5 full cell can be stably cycled for 500 cycles with an energy density of 180 Wh kg−1 and Zn-AC capacitor is stable for 5000 cycles. This electrolyte structural engineering strategy provides new insight into achieving high ZUR of Zn anodes for high performance AZBs.  相似文献   

17.
Aqueous Zn-Iodine (I2) batteries are attractive for large-scale energy storage. However, drawbacks include, Zn dendrites, hydrogen evolution reaction (HER), corrosion and, cathode “shuttle” of polyiodines. Here we report a class of N-containing heterocyclic compounds as organic pH buffers to obviate these. We evidence that addition of pyridine /imidazole regulates electrolyte pH, and inhibits HER and anode corrosion. In addition, pyridine and imidazole preferentially absorb on Zn metal, regulating non-dendritic Zn plating /stripping, and achieving a high Coulombic efficiency of 99.6 % and long-term cycling stability of 3200 h at 2 mA cm−2, 2 mAh cm−2. It is also confirmed that pyridine inhibits polyiodines shuttling and boosts conversion kinetics for I/I2. As a result, the Zn-I2 full battery exhibits long cycle stability of >25 000 cycles and high specific capacity of 105.5 mAh g−1 at 10 A g−1. We conclude organic pH buffer engineering is practical for dendrite-free and shuttle-free Zn-I2 batteries.  相似文献   

18.
The parasitic side reaction on Zn anode is the key issue which hinders the development of aqueous Zn-based energy storage systems on power-grid applications. Here, a polymer additive (PMCNA) engineered by copolymerizing 2-methacryloyloxyethyl phosphorylcholine (MPC) and N-acryloyl glycinamide (NAGA) was employed to regulate the Zn deposition environment for satisfying side reaction inhibition performance during long-term cycling with high Zn utilization. The PMCNA can preferentially adsorb on Zn metal surface to form a uniform protective layer for effective water molecule repelling and side reaction resistance. In addition, the PMCNA can guide Zn nucleation and deposition along 002 plane for further side reaction and dendrite suppression. Consequently, the PMCNA additive can enable the Zn//Zn battery with an ultrahigh depth of discharge (DOD) of 90.0 % for over 420 h, the Zn//active carbon (AC) capacitor with long cycling lifespan, and the Zn//PANI battery with Zn utilization of 51.3 % at low N/P ratio of 2.6.  相似文献   

19.
Zn is a promising anode for aqueous energy storage owing to it intrinsic superior properties such as large capacity, abundant reserves, low potential and safety. But, the growth of dendrites during charge and discharge leads to a decrease in reversibility. In addition, further development of zinc-ion hybrid capacitors (ZICs) is seriously challenging because of the lack of an exceptional cathode. Herein, we use ZIF-8 annealed at 500 °C (annealed ZIF-8) as a host material for stable and dendrite-free Zn anodes. Utilization of annealed ZIF-8 results in dendrite-free Zn deposition and stripping as a result of its porous construction, which contains trace Zn. Furthermore, we firstly proposed innovative N,O dual-doped carbon which was designed by the derived ZIF-8 (ZIF-8 derived C) as cathode for high-energy and power-density ZICs. The new ZIC assembled by Zn@annealed ZIF-8 anode and ZIF-8 derived C cathode provides a capacity of 135.5 mAh g−1 and an energy density of 108.4 Wh kg−1 with a power density of 800 W kg−1 at 1.0 A g−1. In addition, it shows outstanding cycling stability of 91% capacity retention after 6000 cycles at 5.0 A g−1. Moreover, the solid-state ZICs can drive LEDs and smart watches. This ZIC holds promise for the practical application of supercapacitors.  相似文献   

20.
Aqueous zinc‐ion batteries (ZIBs) have become the highest potential energy storage system for large‐scale applications owing to the high specific capacity, good safety and low cost. In this work, a NASICON‐type Na3V2(PO4)3 cathode modified by a uniform carbon layer (NVP/C) has been synthesized via a facile solid‐state method and exhibited significantly improved electrochemical performance when working in an aqueous ZIB. Specifically, the NVP/C cathode shows an excellent rate capacity (e. g., 48 mAh g?1 at 1.0 A g?1). Good cycle stability is also achieved (e. g., showing a capacity retention of 88% after 2000 cycles at 1.0 A g?1). Furthermore, the Zn2+ (de)intercalation mechanism in the NVP cathode has been determined by various ex‐situ techniques. In addition, a Zn||NVP/C pouch cell has been assembled, delivering a high capacity of 89 mAhg?1 at 0.2 A g?1 and exhibiting a superior long cycling stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号