首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 929 毫秒
1.
肖杨  颜晓红  曹觉先  毛宇亮  向君 《中国物理》2004,13(9):1526-1530
Based on a force constant model, we investigated the phonon spectrum and then specific heat of single-walled boron nitride nanotubes. The results show that the frequencies of Raman and infrared active modes decrease with increasing diameter in the low frequency, which is consistent with the results calculated by density functional theory. The fitting formulae for diameter and chirality dependence of specific heat at 300K are given.  相似文献   

2.
We investigate the interface phonon assisted transition in GaAs/AlGaAs quantum cascade lasers (QCLs) by using the transfer matrix method based on the dieIectric continuum model. EIectron eigenvalues and eigenstates are calculated by solving Schroedinger equation and the Poisson equation self-consistently. The AlAs-like and upper GaAs-like interface phonon modes contribute most of the scattering rate. Interface phonon modes couple strongly with electrons at E2, and the magnitude of scattering rate between E2 and E1 is much larger than that between E3 and El, which is helpful for the laser inversion between E3 and E2. The calculation can be easily applied to the design and simulation of QCLs.  相似文献   

3.
Searching and designing materials with intrinsically low lattice thermal conductivity(LTC) have attracted extensive consideration in thermoelectrics and thermal management community. The concept of part-crystalline part-liquid state, or even part-crystalline part-amorphous state, has recently been proposed to describe the exotic structure of materials with chemical-bond hierarchy, in which a set of atoms is weakly bonded to the rest species while the other sublattices retain relatively strong rigidity. The whole system inherently manifests the coexistence of rigid crystalline sublattices and fluctuating noncrystalline substructures. Representative materials in the unusual state can be classified into two categories, i.e., caged and non-caged ones. LTCs in both systems deviate from the traditional T~(-1) relationship(T, the absolute temperature), which can hardly be described by small-parameter-based perturbation approaches. Beyond the classical perturbation theory, an extra rattling-like scattering should be considered to interpret the liquid-like and sublattice-amorphization-induced heat transport. Such a kind of compounds could be promising high-performance thermoelectric materials, due to the extremely low LTCs. Other physical properties for these part-crystalline substances should also exhibit certain novelty and deserve further exploration.  相似文献   

4.
Using the scattering matrix method, we investigate the thermal transport m a nanostructure at low temperarures. It is found that phonon transport exhibits some novel and interesting features: resonant transmission, resonant reflection, and small thermal conductance. A comparison between thermal conductances is performed when stress-free and hard-wall boundary conditions are applied for acoustic modes, respectively. The result indicates that the characteristics of the thermal conductance versus temperature for different types of boundary conditions are qualitatively different.  相似文献   

5.
Stabilized by quantum fluctuations, dipolar Bose–Einstein condensates can form self-bound liquid-like droplets.However in the Bogoliubov theory, there are imaginary phonon energies in the long-wavelength limit, implying dynamical instability of this system. A similar instability appears in the Bogoliubov theory of a binary quantum droplet, and is removed due to higher-order quantum fluctuations as shown recently [Gu Q and Yin L 2020 Phys.Rev. B 102 220503(R)]. We study the excitation energy of a...  相似文献   

6.
The rise of artificial microstructures has made it possible to modulate propagation of various kinds of waves,such as light, sound and heat. Among them, the focusing effect is a modulation function of particular interest. We propose an atomic level triangular structure to realize the phonon focusing effect in single-layer graphene. In the positive incident direction, our phonon wave packet simulation results confirm that multiple features related to the phonon focusing effect can be controlled b...  相似文献   

7.
By using determinant method as in our recent work, the IO phonon modes, the orthogonal relation for polarization vector, electron-IO phonon F~6hlich interaction Hamiltonian, the dispersion relation, and the electron-phonon coupling function in an arbitrary layer-number quantum well system have been derived and investigated within the framework of dielectric continuum approximation. Numerical calculation on seven-layer AlxGal-xAs/GaAs systems have been performed. Via the numerical results in this work and previous works, the general characters of the IO phonon modes in an n-layer coupling quantum well system were concluded and summarized. This work can be regarded as a generalization of previous works on IO phonon modes in some fLxed layer-number quantum well systems, and it provides a uniform method to investittate the effects of IO phonons on the multi-layer coupling quantum well systems.  相似文献   

8.
The phonon dispersion curves (PDC) of Ca70Mg30 metallic glass has been studied at room temperature in terms of phonon eigen frequencies of longitudinal and transverse modes employing three different approaches proposed by Hubbard and Beeby (J. Phys. C: Solid State Phys. 13 (1969) 556), Takeno and Goda (Prog. Theor. Phys. 45 (1971) 331; 47 (1972) 790) and Bhatia and Singh (Phys. Rev. B 31 (1985) 4751). The well recognized model potential of Gajjar et al. is employed successfully to explain electron-ion interaction in the metallic glass. The effective pair potential is used to generate the pair correlation function g(r). The local field correction function (Int. J. Mod. Phys. B 17 (2003) 6001) is used for the first time to introduce the exchange and correlation effects on the aforesaid properties. The present findings of PDCs are found to be in agreement with the available theoretical as well as experimental data. The thermodynamic and elastic properties, i.e. longitudinal and transverse sound velocities, isothermal bulk modulus, modulus of rigidity, Poisson's ratio, Young's modulus and Debye temperature, are also investigated successfully.  相似文献   

9.
Polycrystalline SrTiO3 thin films with the cubic perovskite structure were grown on quartz substrates by pulsed laser deposition. The first-order Raman scattering processes, which were forbidden in SrTiO3 single crystals, were observed in the films at 300 K and lower temperatures due to the structural distortion causing by strain effect and oxygen vacancies. The polar TO2 phonon showed a typical Fano asymmetry in the entire temperature region from 95K to 300K. In contrast, the nonpolar TO3 phonon and polar TO4 phonons were mostly symmetric.  相似文献   

10.
We investigate the phonon ballistic transmission and the thermal conductivity in a dielectric quantum structure. It is found that these observable quantities sensitively depend on geometric parameters, and are of quantum character. The total transmission coetfficient as a function of the reduced waveguide-length exhibits periodical behaviour and the reduced thermal conductance decreases below the ideal universal value for the low temperature. Our results show that one can control the thermal conductivity of the structure and make all kinds of acoustic filters to match practical requirements in devices by adjusting the geometric parameters.  相似文献   

11.
A temperature-dependent photoluminescence measurement is performed in CdSe/ZnSe quantum dots with a ZnCdSe quantum well.We deduce the temperature dependence of the exciton linewidth and peak energy of the zero-dimensional exciton in the quantum dots and two-dimensional exciton in the CdSe wetting layer.The experimental data reveal a reduction of homogeneous broadening of the exciton line in the quantum dots in comparison with that in the two-dimensional wetting layer,which indicates the decrease of exciton and optical phonon coupling in the CdSe quantum dots.  相似文献   

12.
We study the mechanism of van der Waals(vdW)interactions on phonon transport in atomic scale,which would boost developments in heat management and energy conversion.Commonly,the vdW interactions are regarded as a hindrance in phonon transport.Here we propose that the vdW confinement can enhance phonon transport.Through molecular dynamics simulations,it is realized that the vdW confinement is able to make more than two-fold enhancement on thermal conductivity of both polyethylene single chain and graphene nanoribbon.The quantitative analyses of morphology,local vdW potential energy and dynamical properties are carried out to reveal the underlying physical mechanism.It is found that the confined vdW potential barriers reduce the atomic thermal displacement magnitudes,leading to less phonon scattering and facilitating thermal transport.Our study offers a new strategy to modulate the phonon transport.  相似文献   

13.
For the superconductor MgB2, we have calculated the phonon density of states (DOS), phonon dispersion and Eliashberg function throughout the Brillouin zone (BZ), using an empirical potential model. The calculated values are consistent with the theoretical and experimental values. The calculated results show our empiricalpotential model is available for MgB2.  相似文献   

14.
The phonon dispersion relations of three kinds of 4 carbon nanotubes are calculated by using the density functional perturbation theory. It is found that the frequencies of some phonon modes are very sensitive to the smearing width used in the calculations, and eventually become negative at low electronic temperature. Moreover, two kinds of soft modes are identified for the (5,0) tube which are quite different from those reported previously. Our results suggest that the (5,0) tube remains metallic at very low temperature, instead of the metallic-semiconducting transition claimed before.  相似文献   

15.
The low-temperature behaviour of the specific heat of a glassy sample is explained in analogy to what is done in the physics of superfluid helium. The low-temperature excitation spectra of the system is assumed as being formed by two ideal gases of quasiparticles. One of them is a phonon gas, leading to the Debye contribution, and the other one is an ideal gas of another bosonic quasiparticle, whose dispersion relation is similar to the one proposed for liquid helium.  相似文献   

16.
We investigate the phonon transmission and thermal conductance in a general Fibonacci quasicrystal by the model of lattice dynamics and the technique of transfer matrix. It is found that quasiperiodic distribution of masses may greatly destroy the phonon transport at both low and high frequencies and thus may affect the thermal conductance. The thermal conductance increases with temperature at low temperatures and displays saturation with further increase of the temperature. Such saturation behaviour is preserved even when the mass ratio of atoms in the Fibonacci chain is changed.  相似文献   

17.
《Physics letters. A》1988,129(1):71-75
We have measured the thermal conductivity, Young modulus sound velocity and internal friction of a polycrystalline sample of the ceramic superconductor EuBa2Cu3O7-x. The low temperature data can be quantitavely understood assuming the interaction of phonons with tunneling systems.  相似文献   

18.
A method is presented to evaluate the particle–phonon coupling (PC) corrections to the single-particle energies in semi-magic nuclei. In such nuclei, always there is a collective low-lying 2+ phonon, and a strong mixture of single-particle and particle–phonon states often occurs. As in magic nuclei the so-called g L 2 approximation, where g L is the vertex of the L-phonon creation, can be used for finding the PC correction δΣPC(ε) to the initial mass operator Σ0. In addition to the usual pole diagram, the phonon “tadpole” diagram is also taken into account. In semi-magic nuclei, the perturbation theory in δΣPC(ε) with respect to Σ0 is often invalid for finding the PC-corrected single-particle energies. Instead, the Dyson equation with the mass operator Σ(ε) = Σ0 + δΣPC(ε) is solved directly, without any use of the perturbation theory. Results for a chain of semi-magic Pb isotopes are presented.  相似文献   

19.
We analyse the Hopfield factor of the newly found superconductor MgB2 using the linear muffin-tin orbital method.Based on a uniform transferred charge density model raised,it is shown from our calculation that the high difference of electronegativity between boron and magnesium favours the high l(l 1) angular momentum hybridization and then the Hopfield factor.Our analysis is consistent with experimental results.Comparisons with cuprate superconductors are also discussed.  相似文献   

20.
Phonon lasers, as a novel kind of lasers for generating coherent sound oscillation, has attracted extensive attention. Here, we theoretically propose a nonreciprocal phonon laser in a hybrid optomechanical system, which is composed of an asymmetric Fabry–Pérot cavity, an ensemble of N identical two-level atoms, and a mechanical oscillator. The effective driving amplitude related to driving direction leads to an obvious difference in mechanical gain and threshold power, bringing about a nonrecipr...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号