首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
pH and reduction dual-bioresponsive nanosized polymersomes based on poly(ethylene glycol)-SS-poly(2-(diethyl amino)ethyl methacrylate) (PEG-SS-PDEA) diblock copolymers were developed for efficient encapsulation and triggered intracellular release of proteins. PEG-SS-PDEA copolymers with PDEA-block molecular weights ranging from 4.7, 6.8, to 9.2 kg/mol were synthesized in a controlled manner via reversible addition-fragmentation chain transfer (RAFT) polymerization of 2-(diethyl amino)ethyl methacrylate (DEAEMA) using PEG-SS-CPADN (CPADN = 4-cyanopentanoic acid dithionaphthalenoate; M(n) PEG = 1.9 kg/mol) as a macro-RAFT agent. These copolymers existed as unimers in water at mildly acidic pH (<7.2) conditions, but readily formed monodisperse nanosized polymersomes (54.5-66.8 nm) when adjusting solution pH to 7.4. These polymersomes were highly sensitive to intracellular pH and reductive environments, which resulted in fast dissociation and aggregation of polymersomes, respectively. Notably, both fluorescein isothiocyanate (FITC)-labeled bovine serum albumin (FITC-BSA) and cytochrome C (FITC-CC) proteins could facilely be encapsulated into polymersomes with excellent protein-loading efficiencies, likely as a result of electrostatic interactions between proteins and PDEA. The in vitro release studies showed that protein release was minimal (<20% in 8 h) at pH 7.4 and 37 °C. The release of proteins was significantly enhanced at pH 6.0 due to collapse of polymersomes. Notably, the fastest protein release was observed under intracellular-mimicking reductive environments (10 mM dithiothreitol, pH 7.4). MTT assays in RAW 264.7 and MCF-7 cells indicated that PEG-SS-PDEA (9.2 k) polymersomes had low cytotoxicity up to a polymer concentration of 300 μg/mL. Confocal laser scanning microscope (CLSM) observations revealed that FITC-CC-loaded PEG-SS-PDEA (9.2 k) polymersomes efficiently delivered and released proteins into MCF-7 cells following 6 h of incubation. Importantly, flow cytometry assays showed that CC-loaded PEG-SS-PDEA (9.2 k) polymersomes induced markedly enhanced apoptosis of MCF-7 cells as compared to free CC and CC-loaded PEG-PDEA (8.9 k) polymersomes (reduction-insensitive control). These dual-bioresponsive polymersomes have appeared to be highly promising for intracellular delivery of protein drugs.  相似文献   

2.
Wang  Chao  Sun  Bo  Bao  Hui  Wang  Tao  Xu  Wenjuan  Sun  Pengfei  Fan  Quli  Huang  Wei 《中国科学:化学(英文版)》2020,63(9):1272-1280
Dendritic cell(DC) vaccine is an effective strategy for cancer immunotherapy by carrying antigen into DCs and migrating these DCs to drain lymph nodes after inoculation. In this article, second near-infrared window(NIR-II) fluorescent nanoparticles have been used to uptake antigen and activate DCs. Ovalbumin(OVA), an antigen for immunization, can be loaded on the surface of these NIR-II fluorescent nanoparticles via electrostatic interaction by virtue of their functionalized poly(L-lysine)(PLL), which exhibits biocompatibility and strong selective interaction with OVA. In addition, these antigen-loaded complexes can efficiently be engulfed by immature DCs to induce DC maturation and cytokine secretion. After subcutaneous injection, highly sensitive NIR-II fluorescence signal from nanoparticles indicates that nanoparticle-labeled DCs can successfully migrate into lymph nodes in vivo, showing great promise in immunotherapy against cancer.  相似文献   

3.
A facile supramolecular approach for the preparation of charge-tunable dendritic polycations, by a combination of the multi-functionality of dendritic polymers with the dynamic-tunable ability of supramolecular polymers, has been developed. It provides a new strategy for designing and developing efficient gene vectors via noncovalent interactions.  相似文献   

4.
《中国化学快报》2023,34(3):107603
Cancer is the leading cause that threatens human life expectancy due to the lack of effective therapies. Cancer immunotherapy has been explored to improve the body's immune system against cancer and accompanied by promising results in recent years. Interleukin 15 (IL-15), a pleiotropic immunomodulator, is critical for immune cells development and displays great anti-tumor potential in both preclinical and clinical trials. In this study, superagonist IL-15 plasmid (psIL-15) consisting of IL-15Rα-sushi-linker-IL-15 was constructed in order to secret superagonist IL-15 (sIL-15) in tumor site. A gene delivery system through self-assembly by methylated polyethylene glycol-b-polylactic acid-b-methylated polyethylene glycol (mPEG-PLA-mPEG) and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), named DMAM, was designed to deliver psIL-15. Further study showed that DMAM/psIL-15 could successfully deliver psIL-15 to tumor cells and the supernatants of the tumor cells could further stimulate lymphocytes proliferation as well as activation in vitro. Local delivery of DMAM/psIL-15 in animal models demonstrated significant tumor inhibition through enhancing immune cells responses, reducing angiogenesis, promoting tumor cell apoptosis and inhibiting proliferation, with no evidence of system toxicities. These results indicate that DMAM/psIL-15 may be a promising strategy for cancer immunotherapy.  相似文献   

5.
《中国化学快报》2022,33(12):5035-5041
Intelligent nanoplatform that combines multimodal imaging and therapeutic effects holds great promise for precise and efficient cancer therapy. Herein, folate-targeted polymersomes with stimuli-responsiveness were fabricated and evaluated by near-infrared fluorescence (NIRF) and optical coherence tomography angiography (OCTA) dual-imaging for photo-chemo-antiangiogenic therapy against cancer. The folate-targeted polymersomes (FA-MIT-SIPS) not only integrated ammonium bicarbonate (ABC) and mitoxantrone (MIT) into their hydrophilic cavity but also encapsulated indocyanine green (ICG) and sorafenib (SOR) within their hydrophobic layer. NIRF imaging demonstrated that FA-MIT-SIPS effectively accumulated and retained in the tumors. Upon 808 nm laser irradiation, the ICG produced hyperthermia and reactive oxygen species (ROS) for efficient photothermal and photodynamic therapy. In addition, the decomposition of ABC in responsive to acidic tumor environment and ICG-induced hyperthermia accelerated drug release. The released MIT accumulated in nucleus to inhibit DNA synthesis, while the released SOR destructed tumor vascularization. Notably, OCTA imaging was applied to observe the tumor blood flow upon the combination therapy, demonstrating that FA-MIT-SIPS obviously decreased the vessels area density. Moreover, the synergistic photo-chemo-antiangiogenic therapy of FA-MIT-SIPS achieved excellent antitumor effect with 40% of the 4T1 tumor-bearing mice being completely cured without recurrence. The multifunctional polymersomes provide a promising dual-modal imaging-evaluated synergistic strategy for tumor therapy.  相似文献   

6.
Cancer immunotherapy has remarkably improved the therapeutic effect of melanoma and non-small cell lung cancer in the clinic. Nevertheless, it showed disappointing clinical outcomes for treating immunosuppressive tumors, wherein aggressive T cells are rather limited in tumor sites. Therefore, regulating the behavior of T cells in tumor sites to increase their attack ability for suppressing the immunosuppressive tumor is highly desirable. Inspiringly, we designed a dendritic cell-like biomimetic nanoparticle (DMSNs3@HA) to regulate the behavior of T cells for improving the immunotherapy effect against immunosuppressive tumors. In this work, anti-CD3 and anti-CD28 were responsible for mimicking dendritic cells to activate T cells, and anti-PD-1 for blocking the pathway of PD-1/PD-L1 to break the immune “brake”, which synergistically regulated the behavior of T cells to attack cancer cells. Experimental results indicated that DMSNs3@HA can effectively activate T cells and improve their immune response to significantly inhibit the growth of breast cancer. Moreover, it also proved that T cell activation combining immune checkpoint blocking induced the “1 + 1 >2” immunotherapy effect against immunosuppressive tumors. We expect that this strategy will provide new insights into tumor immunotherapy by modulating T cell behavior.

A dendritic cell-like biomimetic nanoparticle has been designed to regulate the behavior of T cells for improving the immunotherapy effect against immunosuppressive tumors.  相似文献   

7.
Dendritic cells (DCs) are the dominant class of antigen-presenting cells in humans; therefore, a range of DC-based approaches have been established to promote an immune response against cancer cells. The efficacy of DC-based immunotherapeutic approaches is markedly affected by the immunosuppressive factors related to the tumor microenvironment, such as adenosine. In this paper, based on immunological theories and experimental data, a hybrid model is designed that offers some insights into the effects of DC-based immunotherapy combined with adenosine inhibition. The model combines an individual-based model for describing tumor-immune system interactions with a set of ordinary differential equations for adenosine modeling. Computational simulations of the proposed model clarify the conditions for the onset of a successful immune response against cancer cells. Global and local sensitivity analysis of the model highlights the importance of adenosine blockage for strengthening effector cells. The model is used to determine the most effective suppressive mechanism caused by adenosine, proper vaccination time, and the appropriate time interval between injections.  相似文献   

8.
A highly efficient drug vector for photodynamic therapy (PDT) drug delivery was developed by synthesizing PEGylated gold nanoparticle conjugates, which act as a water-soluble and biocompatible "cage" that allows delivery of a hydrophobic drug to its site of PDT action. The dynamics of drug release in vitro in a two-phase solution system and in vivo in cancer-bearing mice indicates that the process of drug delivery is highly efficient, and passive targeting prefers the tumor site. With the Au NP-Pc 4 conjugates, the drug delivery time required for PDT has been greatly reduced to less than 2 h, compared to 2 days for the free drug.  相似文献   

9.
To efficiently deliver CpG oligodeoxynucleotides (ODN) in cancer immunotherapy, a multifunctional macrophage targeting delivery system was designed and prepared. Mannosylated carboxymethyl chitosan/protamine sulfate/CaCO3/ODN (MCMC/PS/CaCO3/ODN) nanoparticles were prepared using a facile self-assembly method. The functional components, including MCMC to endow the nanoparticles with macrophage targeting ability, PS to improve the ODN loading capacity and enhance the cell uptake, and CaCO3 to encapsulate ODN and induce the favorable pH sensitivity, were introduced to the delivery systems by self-assembly. Due to the mannose mediated endocytosis and the favorable effects of PS in overcoming delivery barriers, MCMC/PS/CaCO3/ODN nanoparticles exhibit a much higher ODN delivery efficiency and a significantly enhanced immune stimulation capacity as compared with Lipofectamine 2000/ODN complexes. The regulation of NF-κB activity by our ODN delivery system results in dramatically increased production of proinflammatory cytokines including IL-12, IL-6, and TNF-α in RAW264.7 cells. The significantly increased CD80 expression after stimulation by the ODN delivery systems indicates the successful modulation of the macrophage polarity to the anti-tumor M1 phenotype. The multifunctional macrophage targeting delivery system developed has promising applications in delivery of CpG ODN in cancer immunotherapy.  相似文献   

10.
Monitoring dynamic changes in tumor immune markers are essential for predicting the therapeutic responses of tumors to immunotherapy, as well as other traditional therapies, such as chemotherapy and radiotherapy. Here, we designed a lipid-aptamer conjugate by employing a C18 chain to modify an aptamer targeting programmed cell death-ligand 1(C18-ap PDL1). The obtained C18-ap PDL1 could bind with serum albumin postintravenous injection to achieve prolonged blood circulation and enhanced in vivo stability without weakening its binding affinity toward PDL1. C18-ap PDL1 labeling with radionuclides, such as;Tc, could yield a nuclear imaging agent exhibiting much higher tumor-homing ability than bare aptamer. Notably, such radiolabeled C18-ap PDL1 could be utilized to visually monitor the dynamic changes in PDL1 expression postchemotherapy or radiotherapy within a few hours. Additionally, this C18-ap PDL1 could offer improved antitumor immune therapeutic responses,which are comparable with those of commercial anti-PDL1 antibodies at the same weight dosage. Thus, this article presented promising lipid-modified aptamers for cancer immunoimaging and immunotherapy.  相似文献   

11.
The instability and premature charge reversal at pH 7.4 have become the major limitations of charge‐reversal delivery systems. To address this problem, graft copolymer of poly(butylene succinate)‐g‐cysteamine‐bi‐poly(ethylene glycol) (PBS‐g‐CS‐bi‐PEG, bi = benzoic imine bond) was designed and synthesized through facile thiol‐ene click reaction and subsequent Schiff's base reaction. Then, PBS‐g‐CS‐bi‐PEG and carboxyl‐functionalized polyester of poly(butylene succinate)‐g‐3‐mercaptopropionic acid (PBS‐g‐MPA) co‐assemble in aqueous solution to give PEG shell‐sheddable charge‐reversal micelles with sizes of 85–103 nm and low polydispersity of 0.11–0.12. Interestingly, the PBS‐g‐MPA/CS‐bi‐PEG micelles could sensitively and arbitrarily switch their surface charges between negative and positive status in response to pH fluctuation via reversible protonation and deprotonation of carboxyl and amino groups, which endows the desired stability of co‐assembly micelles either during long‐term storage or under physiological conditions. Doxorubicin (DOX) was loaded into PBS‐g‐MPA/CS‐bi‐PEG micelles with a high drug‐loading content of 10.2% and entrapment efficiency of 68% as a result of electrostatic attraction. In vitro release studies revealed that less than 25% of DOX was released within 24 h in the environment mimicking the physiological condition, whereas up to 81% of DOX was released in 24 h under weak‐acid condition resembling microenvironment in endosome/lysosome. In vitro cytotoxicity study suggested that blank PBS‐g‐MPA/CS‐bi‐PEG micelles possessed excellent biocompatibility, while DOX‐loaded PBS‐g‐MPA/CS‐bi‐PEG micelles showed significant cytotoxicity with half‐maximal inhibitory concentration (IC50) of 1.55–1.67 μg DOX equiv/mL. This study provides a facile and effective approach for the preparation of novel charge‐reversal micelles with switchable charges and excellent biocompatibility, which are highly promising to be used as safe nanocarriers for efficient intracellular drug delivery. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2036–2046  相似文献   

12.
Genuine, nondegraded PAMAM dendrimers self-assemble with siRNA into nanoscale particles that are efficient for siRNA delivery and induce potent endogenous gene silencing.  相似文献   

13.
Huang H  Wei Z  Huang Y  Zhao D  Zheng L  Cai T  Wu M  Wang W  Ding X  Zhou Z  Du Q  Li Z  Liang Z 《Lab on a chip》2011,11(1):163-172
Here we report a novel electroporation microchip with great performance and compatibility with the standard multi-well plate used in biological research. The novel annular interdigitated electrode design makes it possible to achieve efficient cell transfection as high as 90% under low-strength electrical pulses, thereby circumventing the many adverse effects of conventional cuvette-type and previously reported microchip-based electroporation devices. Using this system, we demonstrated substantially improved cell transfection efficacy and viability in cultured and primary cells, for both plasmid and synthetic siRNA. Improvements of this system open new opportunities for high-throughput applications of siRNA technology in basic and biomedical research.  相似文献   

14.
Nonviral vectors have been attracting more attention for several advantages in gene delivery and the development of nonviral gene ca rriers with high delivery efficiency and low cytotoxicity has long been a key project.Starburst polyamidoamine dendrimers are a class of synthetic polymers with unique structural and physical characteristics.However,when they are used as gene carrier,the gene transfection efficiency is not satisfactory.Herein,a novel thioketal-core polyamidoamine dendrimer(i.e.,ROS...  相似文献   

15.
There has been increasing interest in recent years in gene delivery. We report the synthesis of non-viral delivery systems composed of variations of the cell penetrating peptide TAT, a nuclear localisation signal peptide and dendritic polylysine. The delivery systems were tested for their ability to form complexes with plasmid DNA by utilising gel shift analysis, isothermal titration calorimetry, particle size analysis, zeta potential and transmission electron microscopy. These techniques indicated the successful formation of complexes between the peptide dendrimer and DNA.  相似文献   

16.
We have explored the interactions of mono- and multivalent guests with Recognition-Induced Polymersomes (RIPs) formed from complementary random copolymers featuring diamidopyridine and thymine functionality. Addition of monovalent guests featuring imide functionality to these RIPs induced a temporary swelling of the vesicles, followed by dissociation of the vesicles due to competitive binding of the guest. Conversely, multivalent thymine-functionalized nanoparticle guests were rapidly incorporated into the RIPs, inducing a contraction of RIP diameter over time. These mono- and multivalent interactions were extremely specific: highly analogous control systems showed no interaction with the RIP structures. Taken together, these studies demonstrate highly selective molecular "lock and key" control over higher-order assembly and recognition processes.  相似文献   

17.
Microspheres which entrapped PS-K were prepared using Zein as a carrier matrix by a one-step or two-step process in dimethyl sulfoxide-H2O media. Microspheres prepared by the latter process provided satisfactory recovery and uptake of PS-K. Use of a catalytic amount of dl-camphorsulfonic acid, glutaraldehyde and rapid addition of aqueous solution of polyvinylpyrrolidone into the reaction media are crucial for the preparation of fine and mono-dispersed microspheres. The release rate of PS-K could be controlled by altering the ratio of PS-K to Zein and the conditions of the medium. In the presence of actinase E, drug release was considerably increased to 70-80% after 24 h incubation. Sonication of the aggregated microspheres readily yielded a mono-dispersed preparation with a particle diameter of less than 1 micron, which would be a suitable size for phagocytosis by macrophages.  相似文献   

18.
We describe a versatile technique for fabricating monodisperse polymersomes with biocompatible and biodegradable diblock copolymers for efficient encapsulation of actives. We use double emulsion as a template for the assembly of amphiphilic diblock copolymers into vesicle structures. These polymersomes can be used to encapsulate small hydrophilic solutes. When triggered by an osmotic shock, the polymersomes break and release the solutes, providing a simple and effective release mechanism. The technique can also be applied to diblock copolymers with different hydrophilic-to-hydrophobic block ratios, or mixtures of diblock copolymers and hydrophobic homopolymers. The ability to make polymer vesicles with copolymers of different block ratios and to incorporate different homopolymers into the polymersomes will allow the tuning of polymersome properties for specific technological applications.  相似文献   

19.
Traditionally the fluorous phase is generated with perfluorinated alkyl groups that are usually perfluorooctyl or longer and are bioaccummulative and biopersistent and therefore, are considered environmentally unfriendly. Here we report a new concept for the construction of the fluorous phase. This concept is based on the amplification of the fluorous effect with the help of dendritic architectures containing very short semifluorinated groups on their periphery. This new concept was demonstrated by the convergent synthesis of the first and second generation AB3 and AB2 benzyl ether dendrons functionalized on their periphery via catalytic nucleophilic addition of their phenolates to perfluoropropyl vinyl ether. The resulting dendrons are liquids. Their fluorous phase affinity was analyzed and demonstrated that the dendritic architecture amplifies the fluorous phase at a specific generation by the number of functional groups on the dendron periphery, and at different generations by increasing their generation number. Therefore, this concept is very efficient for the design and synthesis of new fluorous materials. In addition, by contrast with dendrons containing perfluoroalkyl groups on their periphery, the current dendrons mediate the disassembly of their parent building blocks but do not mediate the self‐assembly in a supramolecular architecture. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2498–2508, 2010  相似文献   

20.
Tran TH  Nguyen CT  Kim DP  Lee YK  Huh KM 《Lab on a chip》2012,12(3):589-594
This paper demonstrates the highly efficient synthesis of amphiphilic heparin-folic acid-retinoic acid (HFR) bioconjugates with a high drug coupling ratio by a microfluidic approach. The microfluidic synthesis enabled the conjugation of 17 molecules of retinoic acid to each heparin chain with 21 possible groups for attachment after reacting for several minutes. In contrast, about 11 molecules of the drug were covalently conjugated to one heparin chain after 4 days in the bulk reaction. The microfluidic based-HFR bioconjugates readily self-assembled in aqueous media to form uniform nanoparticles, while the product from the bulk reaction formed non-uniform nanoparticles with broad size distribution. The HFR nanoparticles with high drug content effectively delivered the drug to folate receptor-positive cancer cells with superior cellular uptake and selective cytotoxicity in vitro compared to HFR nanoparticles synthesized in bulk reaction. With the ability to achieve high drug content in heparin carrier within a short reaction time, the microfluidic technique offers new alternatives for the efficient synthesis of polymer-based conjugates for drug delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号