首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
P‐type Cu2O has been long considered as an attractive photocatalyst for photocatalytic water reduction, but few successful examples has been reported. Here, we report the synthesis of TiO2 (core)/Cu2O (ultrathin film shell) nanorods by a redox reaction between Cu2+ and in‐situ generated Ti3+ when Cu2+‐exchanged H‐titanate nanotubes are calcined in air. Owing to the strong TiO2‐Cu2O interfacial interaction, TiO2 (core)/Cu2O (ultrathin film shell) nanorods are highly active and stable in photocatalytic water reduction. The TiO2 core and Cu2O ultrathin film shell respectively act as the photosensitizer and cocatalyst, and both the photoexcited electrons in the conduction band and the holes in the valence band of TiO2 respectively transfer to the conduction band and valence band of the Cu2O ultrathin film shell. Our results unambiguously show that Cu2O itself can act as the highly active and stable cocatalyst for photocatalytic water reduction.  相似文献   

2.
在用阳极氧化法制备有序排列TiO2纳米管阵列薄膜的基础上,引入脉冲沉积工艺,成功实现了均匀、弥散分布的Cu2O纳米颗粒修饰改性TiO2纳米管阵列,形成Cu2O/TiO2 纳米管异质结复合材料. 利用场发射扫描电镜(FESEM)、场发射透射电镜(FETEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)和紫外-可见漫反射光谱(UV-Vis DRS)对样品进行表征,重点研究了Cu2O/TiO2 纳米管异质结的光电化学特性和对甲基橙(MO)的可见光催化降解性能. 结果表明,Cu2O纳米颗粒均匀附着在TiO2纳米管阵列的管口和中部位置,所制备的Cu2O/TiO2 纳米管异质结具有高效的可见光光催化性能;在浓度为0.01 mol·L-1的CuSO4溶液中制得的Cu2O/TiO2纳米管异质结表现出最好的电化学特性和光催化性能;另外,对Cu2O纳米颗粒影响光催化活性的机理进行了讨论.  相似文献   

3.
In this article, TiO2 nanorods (aspect ratio >20) were prepared through a polyol process and doped with metal ions (Cu2+, Ni2+, Fe3+, and Cr3+). Compared with TiO2 nanoparticles, the TiO2 nanorods displayed relatively higher photocatalytic activity for the degradation of copper sulfophthalocyanine. Moreover, the photocatalytic activity was greatly enhanced when the metal ions were doped in the TiO2 nanorods.  相似文献   

4.
The integration of photosensitizers with low-cost and non-toxic metal oxides is a promising strategy to design heterogeneous photocatalysts for CO2 reduction. Herein, p–n heterojunction photocatalysts (T-CoPPcs) consisting of p-type polymeric cobalt phthalocyanines (CoPPcs) as a photosensitizer coupled with n-type TiO2 nanorods were fabricated through a facile, eco-friendly, one-pot hydrothermal reaction. In this process, CoPPcs were grown on n-type TiO2 nanorods, whereas protonated titanate nanorods began converting to the highly crystalline anatase phase with small crystals on the TiO2 surfaces. The introduction of CoPPcs not only improved the solar light utilization but also accelerated the separation and migration of charge carriers via the p–n heterojunction with the strong interfacial contact Ti–O–Co bond. The increases in crystallinity and surface area of TiO2 nanorods also contributed to the enhanced photoactivities of T-CoPPcs. The CO2 photoreduction of the synthesized materials was evaluated in CO2-saturated MeCN/water using [Co(bpy)3]2+ as a cocatalyst and triethanolamine as a hole scavenger. The optimized nanocomposite exhibited a remarkable CO generation rate of 4.42 mmol/h/g with a high selectivity of 85.3% and outstanding catalytic stability. The influences of cocatalyst concentration, water content, catalyst loading, and hole scavenger concentration were optimized for efficient CO2 reduction. The photocatalytic CO2 conversion efficiency of the present system is found to be higher than that of TiO2-based materials reported in the literature. We believe that this research into a heterostructural design strategy and photocatalytic system may be an inspiration for the development of photocatalytic CO2-to-CO conversion.  相似文献   

5.
Photocatalytic reduction of CO2 with H2O on TiO2 and Cu/TiO2 catalysts   总被引:1,自引:0,他引:1  
Photoinduced reduction of CO2 by H2O to produce CH4 and CH3OH has been investigated on wellcharacterized standard TiO2 catalysts and on a Cu2+ loaded TiO2 catalyst. The efficiency of this photoreaction depends strongly on the kind of catalyst and the ratio of H2O to CO2. Anatase TiO2, which has a large band gap and numerous surface OH groups, shows high efficiency for photocatalytic CH4 formation. Photogenerated Ti3+ ions, H and CH3 radicals are observed as reactive intermediates, by ESR at 77 K. Cu-loading of the small, powdered TiO2 catalyst (Cu/TiO2) brings about additional formation of CH3OH. XPS studies suggest that Cu+ plays a significant role in CH3OH formation.  相似文献   

6.

Many studies are focused on the development of materials for converting carbon dioxide into multicarbon oxygenates such as methanol and ethanol, because of their higher energy density and wider applicability. In this work, TiO2 nanotubes (NT/TiO2) were modified with CuxO nanoparticles in order to investigate the contribution of different ratio of Cu2O/CuO and its distribution over NT/TiO2 for CO2 photoelectro-conversion to methanol. The photoelectrodes were built by anodization process to obtain NT/TiO2 layer, and the decoration with CuxO hybrid system was carried out by electrodeposition process, using Na2SO4 or acid lactic as electrolyte, followed by annealing at different temperatures. X-ray photoelectron spectroscopy analysis revealed the predominance of Cu+1 and Cu+2 at 150 °C and 300 °C, respectively. X-ray diffraction and scanning electron microscopy indicated that under lactic acid solution, the oxide nanoparticles exhibited small size, cubic shape, and uniform distribution on the nanotube wall. While under Na2SO4 electrolyte, large nanoparticles with two different morphologies, octahedral and cubic shapes, were deposited on the top of the nanotubes. All modified electrodes converted CO2 in methanol in different quantities, identified by gas chromatograph. However, the NT/TiO2 modified with CuO/Cu2O (80:20) nanoparticles using lactic acid as electrolyte showed better performance in the CO2 reduction to methanol (0.11 mmol L−1) in relation to the other electrodes. In all cases, a blend among the structures and nanoparticle morphologies were achieved and essential to create new site of reactions what improved the use of light irradiation, minimization of charge recombination rate and promoted high selectivity of products.

  相似文献   

7.
Photocatalytic reduction of CO2 to produce fuels is a promising way to reduce CO2 emission and address the energy crisis. However, the H2 evolution reaction competes with CO2 photoreduction, which would lower the overall selectivity for carbonaceous products. Cu2O has emerged as a promising material for suppressing the H2 evolution. However, it suffers from poor stability, which is commonly regarded as the result of the electron‐induced reduction of Cu2O. This paper describes a simple strategy using Cu2O as a dark cathode and TiO2 as a photoanode to achieve stable aqueous CO2 reduction with a high Faradaic efficiency of 87.4 % and a selectivity of 92.6 % for carbonaceous products. We have shown that the photogenerated holes, instead of the electrons, primarily account for the instability of Cu2O. Therefore, Cu2O was used as a dark cathode to minimize the adverse effects of holes, by which an improved stability was achieved compared to the Cu2O photocathode under illumination. Additionally, direct exposure of the Cu2O surface to the electrolyte was identified as a critical factor for the high selectivity for carbonaceous products.  相似文献   

8.
Na+ complex with the dibenzo-18-crown-6 ester was used as a template to synthesize mesoporous titanium dioxide with the specific surface area 130–140 m2/g, pore diameter 5–9 nm and anatase content 70–90%. The mesoporous TiO2 samples prepared were found to have photocatalytic activity in CuII, NiII and AgI reduction by aliphatic alcohols. The resulting metal–semiconductor nanostructures have remarkable photocatalytic activity in hydrogen evolution from water–alcohol mixtures, their efficiency being 50–60% greater than that of the metal-containing nano-composites based on TiO2 Degussa P25.The effects of the thermal treatment of mesoporous TiO2 upon its photocatalytic activity in hydrogen production were studied. The anatase content and pore size were found to be the basic parameters determining the photoreaction rate. The growth of the quantum yield of hydrogen evolution from TiO2/Ag0 to TiO2/Ni0 to TiO2/Cu0 was interpreted in terms of differences in the electronic interaction between metal nanoparticles and the semiconductor surface. It was found that there is an optimal metal concentration range where the quantum yield of hydrogen production is maximal. A decrease in the photoreaction rate at further increment in the metal content was supposed to be connected with the enlargement of metal nanoparticles and deterioration of the intimate electron interaction between the components of the metal–semiconductor nanocomposites.  相似文献   

9.
以电纺TiO_2纳米纤维为基质,采用一步水热法合成了Bi@Bi_2Sn_2O_7/TiO_2等离子体复合纤维光催化剂。利用X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、高分辨透射电镜(HRTEM)、紫外-可见漫反射(UV-Vis DRS)和光致发光光谱(PL)等分析测试手段对样品的物相、形貌和光电性能等进行表征。以三乙醇胺为电子给体,研究了Bi@Bi_2Sn_2O_7/TiO_2复合纤维光催化裂解水制氢的反应过程。结果表明:在水热过程中,Bi_2Sn_2O_7构筑在TiO_2纳米纤维表面形成p-n结的同时,部分Bi3+被葡萄糖还原成金属Bi沉积在Bi_2Sn_2O_7上。金属Bi的等离子体共振效应与p-n结的协同作用,有效提高了样品的光催化活性,产氢速率达到7.26 mmol·h~(-1)·g~(-1)。  相似文献   

10.
《中国化学快报》2023,34(6):107962
Artificial photosynthesis of valuable chemicals from CO2 is a potential way to achieve sustainable carbon cycle. The CO2 conversion activity is still inhibited by the sluggish charge kinetics and poor CO2 activation. Herein, Ag nanoparticles coupled BiOBr have been constructed by in-situ photoreduction strategy. The crafting of interface between Ag nanoparticles and BiOBr nanosheets, achieving an ultra-fast charge transfer. The BiOBr semiconductor excited electrons and plasmonic Ag nanoparticles generated high-energy hot electrons synchronous accelerates the C=O double bond activation. Thus, the optimized Ag/BiOBr-2 heterostructure shows excellent CO2 photoreduction activity with CO production of 133.75 and 6.83 µmol/g under 5 h of 300 W Xe lamp and visible light (λ > 400 nm) irradiation, which is 1.51 and 2.81 folds versus the pristine BiOBr, respectively. The mechanism of CO2 photoreduction was in-depth understood through in-situ FT-IR spectrum and density functional theory calculations. This study provides some new perspectives into efficient photocatalytic CO2 reduction.  相似文献   

11.
CO_2 photoreduction is an attractive process which allows the storage of solar energy and synthesis of solar fuels. Many different photocatalytic systems have been developed, while the alternative photo-reactors are still insufficiently investigated. In this work, photoreduction of CO_2 with H_2O into CH_4 was investigated in a modified concentrating solar reactor, using TiO_2 and Pt/TiO_2 as the catalysts. The TiO_2 and Pt/TiO_2 samples were extensively characterized by different techniques including powder X-ray diffraction(XRD), N_2 adsorption/desorption and UV–vis absorption. The catalytic performance of the TiO_2 and Pt/TiO_2 samples in the gas phase was evaluated under unconcentrated and concentrated Xe-lamp light and nature solar light with different concentrating ratios. Various parameters of the reaction system and the catalysts were investigated and optimized to maximize the catalytic performance of CO_2 reduction system. Compared with the normal light irradiation, the TiO_2 and Pt/TiO_2 samples show higher photocatalytic activity(about 6–7 times) for reducing CO_2 into CH_4 under concentrated Xe-lamp light and nature solar light. In the range of experimental light intensity, it is found that the concentration of the light makes it suitable for the catalytic reaction, and increases the utilization efficiency of the TiO_2 and Pt/TiO_2 samples while does not decrease the quantum efficiency.  相似文献   

12.
A novel fabrication of Cu2O nanoparticles was successfully achieved through the reduction of Cu2+ in the interlayer of montmorillonite (denoted as MT). The Cu2O nanoparticles formed in the clay interlayer (denoted as Cu2O/MT) had a lamellate shape of 20–100 nm in width and ca. 0.39 nm in thickness, and thus, the Cu2O/MT exhibited a higher specific surface area than neat Cu2O. The Cu2O/MT was applied to a photocatalyst, and its photocatalytic activity was examined in terms of water reduction (i.e., H2 evolution) in the presence of methanol (electron donor). The Cu2O/MT showed a high photocatalytic activity in comparison with neat Cu2O; moreover, the photocatalytic activity was improved by loading a Pt catalyst onto the surface of Cu2O. Based on the dependencies of photocatalytic activity on light intensity as well as methanol concentration, it was revealed that the H2 evolution from water on Cu2O/MT is the rate-determining step. Thus, the active and efficient photocatalysis of Cu2O/MT was associated with an increase in specific surface area corresponding to the number of active sites.  相似文献   

13.
Ag–TiO2 nanorods were synthesized via gel–sol methods. Cyclic voltammetry results showed that surface modification of TiO2 nanorods using Ag led better electrochemical activity involving fast electron transfer to electrode. Electrochemical impedance spectroscopy results revealed that the increase in aspect ratio of TiO2 nanorods and surface modification resulted in synergetic effect of reduction of e?/h+ recombination and charge transfer resistance. Consequently the use of Ag–TiO2 nanorods as photocatalysts exhibited significant increase in photocatalytic decomposition rate of acid red 44.  相似文献   

14.
Amine‐functionalization of TiO2 nanoparticles, through a solvothermal approach, substantially increases the affinity of CO2 on TiO2 surfaces through chemisorption. This chemisorption allows for more effective activation of CO2 and charge transfer from excited TiO2, and significantly enhances the photocatalytic rate of CO2 reduction into methane and CO.  相似文献   

15.
The development of industry induced a massive increase in the emission of carbon dioxide into the atmosphere. A large amount of CO2 and its general availability causes that it could be a cheap reactant in a reaction that runs in a way similar to photosynthesis in plants. Pure TiO2 and metal doped TiO2 are the most studied semiconductor catalysts for photoreduction of CO2. The TiO2/SiO2 and Pd/TiO2/SiO2 catalysts were prepared and studied by temperature-programmed desorption, X-ray diffraction analysis, SEM-EDS, temperature-programmed reduction and then used for the methanol synthesis. The photoactivity of Pd/TiO2/SiO2 catalysts in the reduction of CO2 with H2O was tested at room temperature using photoreactor equipped with 16 lamps. The wavelength was characteristic of near ultraviolet. Post-reaction products were identified with gas chromatograph equipped with the flame ionization detector. Pd doping made the catalysts photoactive and the photoactivity of catalysts was changing as follows: 1%Pd/5%TiO2/SiO2 > 1% Pd/10% TiO2/SiO2 > 1% Pd/15% TiO2/SiO2. Optimum ultraviolet radiation time in the photoreduction of CO2 to methanol was 7 h. An addition of Pd does not change the surface of the carrier.  相似文献   

16.
Photocatalytic Z or S scheme merits higher redox potentials and faster charge separation. However, heterostructure photocatalysts with band gaps of bulk materials often have a type I band structure leading to poor photocatalytic activity. In view of this, we report simultaneous tuning of band gaps of Cu2O and TiO2, where quantum dot Cu2O nanoparticles were formed on doped TiO2 with Ti3+. The reduced size of Cu2O made its conduction band more negative, whereas the introduction of Ti3+ made the absorption edge red shift to the visible light region. The as-formed heterostructure enabled an S-Scheme mechanism with remarkable activity and stability for visible light photodegradation of 4-chlorophenol (4-CP). The as-obtained photocatalysts’ activity demonstrated ca. 510-fold increase as compared to individual ones and a mechanical blend. The as-obtained photocatalysts maintained over 80 % for 5 cycles and 2 months exposure to O2 did not decrease the degradation rate. ESR characterization and scavenger experiments proved the S-Scheme mechanism.  相似文献   

17.
以锐钛矿相TiO2溶胶为基底,采用沉淀法和液相沉积法制备了TiO2/Cu2O/Pt复合空心微球,通过改变nTi4+nCu2+和H2PtCl6·6 H2O溶液的加入量对TiO2的形貌和结构进行调控,采用不同的方法对不同样品的物相及结构、微观形貌和光学性能进行了对比分析。分析结果表明,复合材料中Pt与Cu2O的引入产生协同效应,不仅在一定程度上阻止了电子-空穴的复合,还降低了禁带宽度,在可见光区域光吸收明显增强。与TiO2、Cu2O和TiO2/Cu2O光催化剂相比较,TiO2/Cu2O/Pt降解有机污染物的能力显著增强,首次光照120 min可降解93%的甲基橙(MO)溶液,4次循环后降解率为71%,具有良好的光催化稳定性能。  相似文献   

18.
以锐钛矿相TiO2溶胶为基底,采用沉淀法和液相沉积法制备了TiO2/Cu2O/Pt复合空心微球,通过改变n(Ti4+)∶nCu2+和H2Pt Cl6·6H2O溶液的加入量对TiO2的形貌和结构进行调控,采用不同的方法对不同样品的物相及结构、微观形貌和光学性能进行了对比分析。分析结果表明,复合材料中Pt与Cu2O的引入产生协同效应,不仅在一定程度上阻止了电子-空穴的复合,还降低了禁带宽度,在可见光区域光吸收明显增强。与TiO2、Cu2O和TiO2/Cu2O光催化剂相比较,TiO2/Cu2O/Pt降解有机污染物的能力显著增强,首次光照120 min可降解93%的甲基橙(MO)溶液,4次循环后降解率为71%,具有良好的光催化...  相似文献   

19.
Photocatalytic CO2 reduction is a most promising technique to capture CO2 and reduce it to non-fossil fuel and other valuable compounds. Today, we are facing serious environmental issues due to the usage of excessive amounts of non-renewable energy resources. In this aspect, photocatalytic CO2 reduction will provide us with energy-enriched compounds and help to keep our environment clean and healthy. For this purpose, various photocatalysts have been designed to obtain selective products and improve efficiency of the system. Semiconductor materials have received great attention and have showed good performances for CO2 reduction. Titanium dioxide has been widely explored as a photocatalyst for CO2 reduction among the semiconductors due to its suitable electronic/optical properties, availability at low cost, thermal stability, low toxicity, and high photoactivity. Inspired by natural photosynthesis, the artificial Z-scheme of photocatalyst is constructed to provide an easy method to enhance efficiency of CO2 reduction. This review covers literature in this field, particularly the studies about the photocatalytic system, TiO2 Z-scheme heterojunction composites, and use of transition metals for CO2 photoreduction. Lastly, challenges and opportunities are described to open a new era in engineering and attain good performances with semiconductor materials for photocatalytic CO2 reduction.  相似文献   

20.
使用L-半胱氨酸作为连接剂, 利用硼氢化钠原位还原预先吸附在介孔氧化亚铜表面的氯金酸根离子,得到了Au/Cu2O异质结构. 应用X射线粉末衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱(XPS)、紫外-可见(UV-Vis)光谱和N2物理吸附等手段对催化剂进行表征, 并以λ>400 nm的可见光作为光源, 评价了该催化剂光催化降解亚甲基蓝(MB)的活性. 实验结果表明, 直径为4 nm的金颗粒完好地负载在介孔氧化亚铜的表面, 并且介孔氧化亚铜的细微结构与孔径均未发生变化. 研究表明, 以乙醇作为反应溶剂有效抑制了AuCl4-与Cu2O之间的氧化还原反应, 从而有利于氧化亚铜介孔结构的保持及金颗粒的原位还原. 光催化降解亚甲基蓝的结果表明, Au/Cu2O异质结构的光催化活性比纯氧化亚铜光催化活性有明显提高. 推测其光催化性能提高的主要原因如下: 一方面, 金颗粒良好的导电性有利于氧化亚铜表面电子的快速转移, 实现电子-空穴分离; 另一方面, 金颗粒可能存在的表面等离子共振现象加速了光生电子的产生.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号