首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesoporous LiFePO4/C composites containing 80 wt% of highly dispersed LiFePO4 nanoparticles (4–6 nm) were fabricated using bimodal mesoporous carbon (BMC) as continuous conductive networks. The unique pore structure of BMC not only promises good particle connectivity for LiFePO4, but also acts as a rigid nano-confinement support that controls the particle size. Furthermore, the capacities were investigated respectively based on the weight of LiFePO4 and the whole composite. When calculated based on the weight of the whole composite, it is 120 mAh·g?1 at 0.1 C of the high loading electrode and 42 mAh·g?1 at 10 C of the low loading electrode. The electrochemical performance shows that high LiFePO4 loading benefits large tap density and contributes to the energy storage at low rates, while the electrode with low content of LiFePO4 displays superior high rate performance, which can mainly be due to the small particle size, good dispersion and high utilization of the active material, thus leading to a fast ion and electron diffusion.  相似文献   

2.
Olivine LiFePO4/C cathode materials for lithium ion batteries were synthesized using monodisperse polystyrene (PS) nano-spheres and other carbon sources. The structure, morphology, and electrochemical performance of LiFePO4/C were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), galvanostatic charge–discharge tests, electrochemical impedance spectroscopy (EIS) measurements, and Raman spectroscopy measurements. The results demonstrated that LiFePO4/C materials have an ordered olivine-type structure with small particle sizes. Electrochemical analyses showed that the LiFePO4/C cathode material synthesized from 7 wt.% PS nano-spheres delivers an initial discharge capacity of 167 mAh g-1 (very close to the theoretical capacity of 170 mAh g-1) at 0.1 C rate cycled between 2.5 and 4.1 V with excellent capacity retention after 50 cycles. According to Raman spectroscopy and EIS analysis, this composite had a lower I D/I G, sp 3/sp 2 peak ratio, charge transfer resistance, and a higher exchange current density, indicating an improved electrochemical performance, due to the increased proportion of graphite-like carbon formed during pyrolysis of PS nano-spheres, containing functionalized aromatic groups.  相似文献   

3.
Olivine LiFePO4 is challenged by its poor electronic and ionic conductivities for lithium-ion batteries. Polyethylene glycol (PEG) has been applied for LiFePO4 preparation by different research groups, but there is no consensus on the influence of the mean molecular weight of PEG on the structure and electrochemical performances of LiFePO4/C composites. In this work, LiFePO4/C composites were prepared by using micronsized FePO4·2H2O powder as starting material, PEG (mean molecular weight of 200, 400, 4000 or 10000) and citric acid as complex carbon source. The structure and electrochemical performances of LiFePO4/C composites would be decided considerably by the mean molecular weight of PEG, and the sample using PEG200 exhibited the least inter-particle agglomeration, the smallest charge transfer resistance and the highest discharge capacity. A probable growth mechanism is also proposed based on SEM images and electrochemical results: with the assistance of citric acid, PEG molecule with small molecular weight tends to cover one or only a few micron-sized FePO4·2H2O particles, significantly suppress the agglomeration of primary LiFePO4 particles and thus result in uniform particle-size distribution and carbon coating.  相似文献   

4.
LiFePO4/C composites are prepared by using two types of carbon source: one using polymer (PAALi) and the other using sucrose. The physical characteristics of LiFePO4/C composites are investigated by X-ray diffraction), scanning electron microscopy, BET, laser particle analyzer, and Raman spectroscopy. Their electrochemical properties are characterized by cyclic voltammograms, constant current charge–discharge, and electrochemical impedance spectra. These analyses indicate that the carbon source and carbon content have a great effect on the physical and electrochemical performances of LiFePO4/C composites. An ideal carbon source and appropriate carbon content can effectively increase the lithium-ion diffusion coefficient and exchange current density, decrease the charge transfer resistance (R ct), and enhance the electrochemical performances of LiFePO4/C composite. The results show that PAALi is a better carbon source for the synthesis of LiFePO4/C composites. When the carbon content is 4.11 wt.% (the molar ratio of PAALi/Li2C2O4 was 2:1), as-prepared LiFePO4/C composite shows the best combination between electrochemical performances and tap density.  相似文献   

5.
采用Li_2CO_3与Li OH·H_2O为复合锂源制备LiFePO_4/C材料,同时优化了材料中的碳含量。由于氢氧化锂的熔点低于碳酸锂,在同样的烧结温度下,采用复合锂源可以获得更佳的熔融状态,在高温合成过程中使锂离子具有更高的扩散性,能够更顺利地得到高纯度的LiFePO_4晶相。通过优化碳包覆量达到提高导电性与控制晶粒尺寸的目的,使材料晶相结构完整,纯度高,表现出优秀的加工性能与电化学性能。所制得的LiFePO_4/C材料放电克容量达到158.2 m Ah·g~(-1),在全电池中经过100 d存储后容量保持率仍然高于94.0%,具有优异的长期可靠性。  相似文献   

6.
Graphene materials with superior electrical conductivities and high surface area would be advantageous for application in energy storage. And LiFePO4 has been a promising electrode material however its poor conductivity limits its practical application. To improve the electronic conductivity, we prepare LiFePO4/graphene composites in a co-precipitation method, in which graphene nanosheets are used as additives. The composites were characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM), and their electrochemical properties were investigated by galvanostatic charge and discharge tests. The experimental results show that the capacity delivery and cycle performances of LiFePO4 could be improved considerably by adding graphene. Therefore, LiFePO4/graphene composites are a promising candidate for lithium secondary batteries.  相似文献   

7.
A solid-state reaction process with poly(vinyl alcohol) as the carbon source is developed to synthesize LiFePO4-based active powders with or without modification assistance of a small amount of Li3V2(PO4)3. The samples are analyzed by X-ray diffraction, scanning/transmission electron microscopy, and Raman spectroscopy. It is found that, in addition to the minor effect of a lattice doping in LiFePO4 by substituting a tiny fraction of Fe2+ ions with V3+ ions, the change in the form of carbon coating on the surface of LiFePO4 plays a more important role to improve the electrochemical properties. The carbon changes partially from sp3 to sp2 hybridization and thus causes the significant rise in electronic conductivity in the Li3V2(PO4)3-modified LiFePO4 samples. Compared with the carbon-coated baseline LiFePO4, the composite material 0.9LiFePO4·0.1Li3V2(PO4)3 shows totally different carbon morphology and much better electrochemical properties. It delivers specific capacities of 143.6 mAh g?1 at 10 C rate and 119.2 mAh g?1 at 20 C rate, respectively. Even at the low temperature of ?20 °C, it delivers a specific capacity of 118.4 mAh g?1 at 0.2 C.  相似文献   

8.
Olivine-type LiFePO4 is one of the most promising cathode materials for lithium-ion batteries, but its poor conductivity and low lithium-ion diffusion limit its practical application. The electronic conductivity of LiFePO4 can be improved by carbon coating and metal doping. A small amount of La-ion was added via ball milling by a solid-state reaction method. The samples were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM)/mapping, differential scanning calorimetry (DSC), transmission electron microscopy (TEM)/energy dispersive X-ray spectroscopy (EDS), and total organic carbon (TOC). Their electrochemical properties were investigated by cyclic voltammetry, four-point probe conductivity measurements, and galvanostatic charge and discharge tests. The results indicate that these La-ion dopants do not affect the structure of the material but considerably improve its rate capacity performance and cyclic stability. Among the materials, the LiFe0.99La0.01PO4/C composite presents the best electrochemical behavior, with a discharge capacity of 156 mAh g?1 between 2.8 and 4.0 V at a 0.2 C-rate compared to 104 mAh g?1 for undoped LiFePO4. Its capacity retention is 80% after 497 cycles for LiFe0.99La0.01PO4/C samples. Such a significant improvement in electrochemical performance should be partly related to the enhanced electronic conductivities (from 5.88?×?10?6 to 2.82?×?10?3 S cm?1) and probably the mobility of Li+ ion in the doped samples. The LiFe0.99La0.01PO4/C composite developed here could be used as a cathode material for lithium-ion batteries.  相似文献   

9.
A LiFePO4/C composite was obtained by a polymer pyrolysis reduction method, using lithium polyacrylate (LiPAA) as carbon source and fractional lithium source, and FePO4·2H2O as iron and phosphorus source. The structure of the LiFePO4/C composites was investigated by X-ray diffraction (XRD). The micromorphology of the precursors and LiFePO4/C powders was observed using scanning electron microscopy (SEM). Laser particle analyzer and BET were also used to characterize the materials. It was found that the micromorphology, particle size distribution and specific surface area of LiFePO4/C composites were greatly influenced by the molecular weight of LiPAA. The electrochemical properties of the LiFePO4/C composites were evaluated by cyclic voltammograms (CVs), electrochemical impedance spectra (EIS) and constant current charge/discharge cycling tests. The results showed that the molecular weight of LiPAA, heating rate, synthetic temperature and sintering duration directly affected the electrochemical properties of LiFePO4/C composites. The sample with the optimized electrochemical properties were obtained in the following conditions, i.e., LiPAA with the molecular weight of 20,000, heating rate of 10 °C min−1, synthetic temperature of 700 °C and sintering duration of 15 h.  相似文献   

10.
Crystalline LiFePO4 nanoplates were incorporated with 5 wt.% multi-walled carbon nanotubes (CNTs) via a facile low temperature polyol process, in one single step without any post heat treatment. The CNTs were embedded into the LiFePO4 particles to form a network to enhance the electrochemical performance of LiFePO4 electrode for lithium-ion battery applications. The structural and morphological characters of the LiFePO4–CNT composites were investigated by X-ray diffraction, Fourier Transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. The electrochemical properties were analyzed by cyclic voltammetry, electrochemical impedance spectroscopy and charge/discharge tests. Primary results showed that well crystallized olivine-type structure without any impurity phases was developed, and the LiFePO4–CNT composites exhibited good electrochemical performance, with a reversible specific capacity of 155 mAh g−1 at the current rate of 10 mA g−1, and a capacity retention ratio close to 100% after 100 cycles.  相似文献   

11.
LiFePO4/carbon complexes were prepared by electrospinning to improve rate performance at high C-rate and their electrochemical properties were investigated to be used as a cathode active material for lithium ion battery. The LiFePO4/carbon complexes were prepared by the electrospinning method. The prepared samples were characterized by SEM, EDS, XRD, TGA, electrometer, and electrochemical analysis. The LiFePO4/carbon complexes prepared have a continuous structure with carbon-coated LiFePO4 and the LiFePO4 in LiFePO4/carbon complex has improved thermal stability from carbon coating. The conductivity of LiFePO4/carbon complex heat-treated at 800 °C is measured as 2.23 × 10?2 S cm?1, which is about 106–107 times more than that of raw LiFePO4. The capacity ratio of coin cell manufactured from raw LiFePO4 is 40%, whereas the capacity ratio of coin cell manufactured from LiFePO4/carbon complex heat-treated at 800 °C is 61% (10 C/0.1 C). The improved rate performance of LiFePO4/carbon complex heat-treated at 800 °C is due to the carbon coating and good electrical connection.  相似文献   

12.
To enhance the capability of LiFePO4 materials, we attempted to coat carbon by incorporating various organic carboxylic acids as carbon sources. The purity of LiFePO4 was confirmed by XRD analysis. Galvanostatic cycling, cyclic voltammetry, electric impedance spectroscopy, and conductivity measurements were used to evaluate the material’s electrochemical performance. The best cell performance was delivered by the sample coated with 60 wt.% malonic acid. Its first-cycle discharge capacity was 149 mA h g?1 at a 0.2 C rate or 155 mA h g?1 at a 0.1 C rate. The presence of carbon in the composite was verified by total organic carbon and Raman spectral analysis. The actual carbon content of LiFePO4 was 1.90 wt.% with the addition of 60 wt.% malonic acid. The LiFePO4/C samples sintered with 60 wt.% various carboxylic acids were measured by Raman spectral analysis. The intense broad bands at 1,350 and 1,580 cm?1 are assigned to the D and G bands of residual carbon in LiFePO4/C composites, respectively. The peak intensity (I D/I G) ratio of the synthesized powders is from 0.907 to 0.935. Carbon coatings of LiFePO4 with low I D/I G ratios can be produced by incorporating carboxylic acid additives before the final calcining process. The use of carboxylic acid as a carbon source increases the overall conductivity (~10?4 S cm?1) of the material.  相似文献   

13.
A structurally stable microporous metallic carbon allotrope, poly(spiro[2.2]penta-1,4-diyne) or, for short, spiro-carbon, with I41/amd (D4h) symmetry is predicted by first-principles calculations using density functional theory (DFT). The calculations of electronic, vibrational, and structural properties show that spiro-carbon has lower relative energy than other elusive carbon allotropes such as T-Carbon and 1-diamondyne (Y-Carbon). Its structure can be pictured as a set of trans-cisoid-polyacetylene chains tangled and interconnected together by sp3 carbon atoms. Calculations reveal a metallic electronic structure arising from an “intrinsic doping” of trans-cisoid-polyacetylene chains with sp3 carbon atoms. Possible synthetic routes and various simulated spectra (XRD, NMR, and IR absorption) are provided in order to guide future efforts to synthesize this novel material.  相似文献   

14.
Using the cheap raw materials lithium carbonate, iron phosphate, and carbon, LiFePO4/C composite can be obtained from the carbothermal reduction method. X-ray diffraction (XRD) and scanning electronic microscope (SEM) observations were used to investigate the structure and morphology of LiFePO4/C. The LiFePO4 particles were coated by smaller carbon particles. LiFePO4/C obtained at 750 °C presents good electrochemical performance with an initial discharge capacity of 133 mAh/g, capacity retention of 128 mAh/g after 20 cycles, and a diffusion coefficient of lithium ions in the LiFePO4/C of 8.80?×?10?13 cm2/s, which is just a little lower than that of LiFePO4/C obtained from the solid-state reaction (9.20?×?10?13 cm2/s) by using FeC2O4 as a precursor.  相似文献   

15.
In the present study, carbon-coated lithium iron phosphate (LiFePO4/C) is prepared directly by a polyol-assisted pyro-synthesis performed under reaction times of a few seconds in open-air conditions. The polyol solvent, tetraethylene glycol (TTEG), acts as a low-cost fuel to facilitate combustion and the released exothermic energy promotes the nucleation and growth processes of the olivine nanoparticles. In addition, phosphoric acid (used as the phosphorous source) acts as a catalyst to accelerate polyol carbonization. The structure analysis of the as-prepared LiFePO4/C using X-ray, neutron diffraction and 7Li NMR studies suggested the efficacy of the rapid technique to produce highly crystalline phase-pure olivine nanocrystals. The electron microscopy and particle-size distribution studies revealed that the average particle diameters lie below 100 nm and confirmed the presence of a surface carbon layer of 2–3 nm thickness. The thermal and elemental studies indicated that the carbon content in the sample was approximately 5 %. The prepared LiFePO4/C cathode delivered capacities of 162 mA h g-1 at 0.1 °C rates with impressive capacity retention for extended cycling. The polyol-assisted pyro-synthesis, which evades the use of external energy sources, is not only a straightforward, simple and timely approach but also offers opportunities for large-scale LiFePO4/C production.  相似文献   

16.
以乙二醇为溶剂,采用溶剂热法一步合成圆饼状LiFePO4,然后以葡萄糖为碳源与合成的LiFePO4前躯体高温烧结得到碳包覆的LiFePO4/C复合材料,其振实密度高达1.3 g·cm-3。采用X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对LiFePO4/C复合材料进行了物相和形貌表征,研究结果表明制备得到的LiFePO4呈圆饼状,且生成的圆饼是由单晶LiFePO4纳米片堆积而成。此外,LiFePO4颗粒表面碳层包覆均匀。将制备的LiFePO4/C用作锂离子电池正极材料,电化学性能测试表明其具有高的充放电比容量(在0.1C时放电,其初始放电比容量为157.7 mAh·g-1)与良好的循环性能(500次循环后容量保持率为82.4%)。  相似文献   

17.
以月桂酸为碳源和表面活性剂,氢氧化锂、碳酸锂和醋酸锂为锂源,采用流变相法制备LiFePO4/C复合材料。运用X射线衍射(XRD)、扫描电子显微镜(SEM)、粒度分析、恒流充放电测试、循环伏安以及交流阻抗测试等方法对复合材料进行表征。结果表明,不同的锂源对LiFePO4/C复合材料的结构和电化学性能均有很大影响,以氢氧化锂为锂源合成的LiFePO4/C材料展示出最佳的循环性能和倍率性能。该材料在0.1C下放电比容量为153.4 mAh.g-1,在大倍率10 C下,容量保持率仍可达76%,甚至10C下循环800次后,容量衰减率仅有4%,SEM结果显示该材料具有较小的粒径(~200 nm),且分布集中,有效提高了电子迁移速率,从而改进了LiFePO4/C的倍率性能。  相似文献   

18.
The olivine-type samarium-doped LiFe1 ? x Sm x PO4/C (x?=?0, 0.01, 0.02, 0.03, 0.04, and 0.05) composites were synthesized via liquid-phase precipitation reaction combined with the high-temperature solid-state method. The structure, morphology, and electrochemical performance of the samples were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscope, energy dispersive spectroscopy, galvanostatic charge–discharge, galvanostatic intermittent titration technique, and electrochemical impedance spectroscopy. The results showed that the small amount of Sm3+ ion-doped can keep the olivine microstructure of LiFePO4, modify the particle morphology, decrease polarization overpotential and charge transfer resistance, and enhance exchange current density, thus improve the electrochemical performance of the LiFePO4/C. However, the large doped content of Sm3+ ion can form more SmPO4, which can weaken the electrochemical performance of LiFePO4/C. Among all the doped samples, LiFe0.99Sm0.01PO4/C showed the best rate capacity, cycling stability, and low temperature performance. The LiFe0.99Sm0.01PO4/C sample exhibited the initial discharge capacity of 148.1, 133.4, 117.5, and 106.6 mAh g?1 at 1C, 2C, 5C, and 10C, respectively. In addition, the discharge capacity of the material was 94.8 mAh g?1 after 800 cycles at 10C. Moreover, the initial discharge capacity of 0.1C, 0.2C, 0.5C, and 1C were 104.4, 96.2, 53.9, and 50.8 mAh g?1 at ?20 °C.  相似文献   

19.
LiFePO4-multiwalled carbon nanotubes (MWCNTs) composites were prepared by a hydrothermal method followed by ball-milling and heat treating. Cyclic voltammetry, ac impedance and galvanostatic charge/discharge testing results indicate that LiFePO4-MWCNTs composite exhibits higher discharge capacity and rate capability than pure LiFePO4 at high-rate at room temperature. It is demonstrated that the added MWCNTs not only increase the electronic conductivity and lithium-ion diffusion coefficient but also decrease crystallite size and charge transfer resistance of LiFePO4-MWCNTs composite.  相似文献   

20.
以乙二醇为溶剂,采用溶剂热法一步合成圆饼状LiFePO_4,然后以葡萄糖为碳源与合成的LiFePO_4前躯体高温烧结得到碳包覆的LiFePO_4/C复合材料,其振实密度高达1.3 g·cm~(-3)。采用X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对LiFePO_4/C复合材料进行了物相和形貌表征,研究结果表明制备得到的LiFePO_4呈圆饼状,且生成的圆饼是由单晶LiFePO_4纳米片堆积而成。此外,LiFePO_4颗粒表面碳层包覆均匀。将制备的LiFePO_4/C用作锂离子电池正极材料,电化学性能测试表明其具有高的充放电比容量(在0.1C时放电,其初始放电比容量为157.7 mAh·g~(-1))与良好的循环性能(500次循环后容量保持率为82.4%)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号