首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reduction of transition metal salts and oxides using hydrotriorganoborates in organic media allows the production of X-ray amorphous nanopowders of metals and alloys under mild conditions. For example, the reduction of needle-shaped iron oxides at 80°C in organic solvents leads to acicular iron-magnet pigments suitable for recording magnetic signals. The reduction of TiCl4 with K[BEt3H] gives an ether-soluble [Ti(0)·0.5THF]x which serves as a catalyst for the hydrogenation of titanium or zirconium sponges and related systems and as a powerful activator for heterogeneous hydrogenation catalysts. The use of tetraalkylammonium hydrotriorganoborates as reducing agents leads to colloidal transition metals in organic phases. These colloids may also be obtained using conventional reducing agents after first reacting the metal salts with the stabilizing tetraalkylammonium halide. Colloidal metals prepared in this way serve as sources for heterogeneous metal catalysts.  相似文献   

2.
Metal complexes of Niacin (3-pyridin carboxylic acid) were prepared in aqueous medium and characterized by different physico-chemical methods. On the basis of elemental analysis the empirical formula of the complexes have been proposed as [Fe(C6H4NO2)]Cl2, [Co(C6H4NO2)]Cl, [Zn(C6H4NO2)]Cl, [Cd(C6H4NO2)]Cl and [Hg(C6H4NO2)]Cl. IR spectral data indicate that the metal-ligand bonding occurs through nitrogen atom of aromatic ring and oxygen atom of COO-group. UV-visible spectra show that Fe(III) and Co(II) complexes show d-d electronic transition in addition to π → π*, n → π* and n → σ* transitions. The Fe(II) and Co(II) complexes are paramagnetic. QSTG analysis data strongly support the absence of water molecules in the complexes, and the weight of the residue corresponds to the respective metal oxides. Cyclic voltammetric studies suggest that the redox properties of Zn(II), Cd(II) and Hg(II) in their complexes are modified compared to the uncoordinated metal ion. The CV data also indicate that the charge transfer processes are not reversible.  相似文献   

3.
费昌沛  陈德恒 《化学学报》1983,41(4):364-370
大孔的苯乙烯-二乙烯苯共聚物经氯甲基化后,分别与乙酰丙酮镍、乙酰丙酮钠和四正丁基乙酰丙酮铵三种不同的乙酰丙酮盐反应,可制得聚3-(p-乙烯苄基)戊二酮-[2,4]。其中以由乙酰丙酮镍制得的聚合物最好,除二乙烯苯外,78%左右的苯环乙酰丙酮化了。该聚合物螯合Fe~(3 )和Ni~(2 )的能力与β-二酮基高聚物相仿或稍优。还比较了此类高聚物的物理机械性能。  相似文献   

4.
This report provided the first example of using pivot concept to prepare monolithic molecularly imprinted polymers (MIPs) with ketoprofen (KET) imprints, in which metal ions were employed as mediator between the functional monomer and the template to achieve higher fidelity of imprint. To solve metal ions in pre-polymerization system, a new ternary porogen of dimethyl sulfoxide-toluene-isooctane was developed for preparation of MIP monoliths with high porosity and good permeability. The effect of polymerization parameters such as the nature of metal ions, the ratio of template to metal ion and the degree of crosslinking, on the permeability, morphology and affinity of the metal ion mediated MIP monolith were studied. The experiments demonstrated that Ni(2+), Co(2+) and Zn(2+) can be applied as pivot to prepare KET-imprinted monolith. Relative to monolithic MIP without metal ions, all the ion-mediated macropore MIP monoliths showed enhanced permeability, capacity factor and selectivity factor. High permeability (1.06×10(-7)mm(2)) was obtained on the Co(2+)-mediated MIP monolith and great selectivity factor (3.84) was achieved on the Ni(2+)-mediated one. The stoichiometric displacement model was constructed to investigate the recognition mechanism of metal-ion mediated MIP. The results indicate that metal ion as pivot not only improves the affinity but also allows the fine-tuning on the macroporous structure of MIP monolith.  相似文献   

5.
Summary New complexes ofN-2-picolyl-N -phenylthiourea (HPPT) have been prepared employing a number of different divalent metal ion salts. The resultant CoII, NiII, and CuII complexes, which generally involve coordination of HPPT, except for the CuII halides which have a deprotonated ligand, have been characterized by partial elemental analysis, molar conductivity and spectral (i.r., u.v.-vis., and e.s.r.) studies. HPPT is an NN bidentate ligand while the deprotonated form serves as an NNS bridging tridentate ligand. The complexes undergo partial or total decomposition in the solvents in which they are soluble. The compounds [Cu(HPPT)2X2] have resolved g features in their powder spectra indicating that magnetic dilution has occurred.On leave from Mansoura University, Mansoura, Egypt.  相似文献   

6.
采用逐步静电自组装及冰晶模板法制备了负载有金-钯双金属纳米颗粒(Au-Pd NPs)的Au-Pd/H-C3N4/Ti3C2Tx复合材料,并用于对核黄素(Rf)和槲皮素(Qu)的定量同步电化学检测研究。结果表明,Au-Pd NPs的引入进一步改善了材料的导电性和电催化活性,加快了H-C3N4与Ti3C2Tx之间的电子转移并提供了部分活性位点,提高了复合材料的电化学性能。该复合材料对Rf和Qu具有良好的电化学传感性能,实现了对Rf和Qu的单独电化学检测。结合不同浓度比条件下Rf和Qu的电流响应矩阵模型及对应拟合方程,表明该复合材料能够实现对Rf和Qu的同步定量电化学检测,在最佳实验条件下对Rf和Qu的检测限能够达到5.62 nM(Rf)和20.1 nM(Qu)。  相似文献   

7.
Fullerene nanowhiskers (FNWs) composed of C(60) fullerene molecules were prepared using the liquid-liquid interfacial precipitation (LLIP) method in the carbon-disulfide (CS(2)) and isopropyl alcohol (IPA) system. The electron microscopic images reveal the formation of non-tubular FNWs. The X-ray diffraction (XRD) pattern studies indicate the presence of fcc crystalline structure and unusual triclinic structure in the FNWs. The selected area electron diffraction pattern (SAED) analysis demonstrates the existence of triclinic and electron beam assisted fcc to tetragonal crystalline phase transformation. The formation of triclinic structure might be validated due to the partial polymerization of FNWs at C(60) saturated CS(2)-IPA interface. The high solubility of C(60) in CS(2) solvent system results in partial polymerization of FNWs. The polymerization of fullerene molecules in the FNWs has been further confirmed using Raman spectroscopy.  相似文献   

8.
Three different functionalized β-cyclodextrins (β-CDs) bearing the C60 moiety linked covalently have been prepared in good yields by reaction between the parent β-CD and [60]fullerene via 1,3-dipolar cycloaddition. These compounds have been fully spectroscopically characterized and their electrochemical behavior has been investigated. Surprisingly, the electrochemical properties of the C60 cage remain unaltered even after chemical functionalization, making these systems very appealing as supramolecular hosts for electron-transfer processes.  相似文献   

9.
Ternary Ag/Polyaniline/Au nanocomposites were synthesized successfully by immobilizing of Au nanoparticles (NPs) on the surface of Ag/Polyaniline (PANI) nanocomposites. Ag/PANI nanocomposites were prepared via in situ chemical polymerization of aniline in the presence of 4-aminothiophenol (4-ATP) capped silver colloidal NPs. Then, uniform gold (Au) NPs were assembled on the surface of resulted Ag/PANI nanocomposites through electrostatic interaction to get Ag/Polyaniline/Au nanocomposites. The nanocomposites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), ultraviolet visible spectroscopy (UV-Vis), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR). Moreover, Ag/PANI/Au nanocomposites were immobilized on the surface of a glassy carbon electrode and showed enhanced electrocatalytic activity for the reduction of H2O2 compared with Ag/PANI.  相似文献   

10.
CdS/PAM nanocomposites have been successfully synthesized in situ via a ultrasound-assisted route under ambient condition, employing CdCl(2) and Na(2)S(2)O(3) as Cd(2+) and S(2-) ion sources and acrylamide (AM) and (NH(4))(2)S(2)O(8) as organic monomers and initiating reagents, respectively. The results from X-ray powder diffraction (XRD) analysis and the IR spectrum of the final product showed the formation of CdS nanoparticles and the polymerization of AM monomers. SEM observations showed that the CdS/PAM nanocomposites could film on the quartz substrate and some holes in which many nanorods regularly arranged distributed on the film. The UV-vis absorption and PL spectra of CdS/PAM nanocomposites obviously differed from those of CdS nanoparticles prepared under the same conditions due to the presence of PAM. The electrochemical research showed that CdS/PAM nanocomposites had a stronger ability to promote electron transfers between Hb and the Au electrode than CdS nanoparticles prepared under the same conditions. A possible formation mechanism was also suggested based on the results of experiments.  相似文献   

11.
Microchimica Acta - The surface of attapulgite was cleaned, modified with 3-aminpropyltriethoxysilane, and then covered with silver nanoparticles. The structure and morphology of the modified...  相似文献   

12.
Novel nanocomposite films containing DNA-silver nanohybrids have been successfully fabricated by combined use of the layer-by-layer self-assembly technique and an in situ electrochemical reduction method with the DNA-Ag+ complex as one of the building blocks. UV-vis absorption spectroscopy was employed to monitor the buildup of the multilayer films, which suggested a progressive deposition with almost an equal amount of the DNA-Ag+ complex in each cycle. The following electrochemical reduction of silver resulted in the formation of metal nanoparticles in the film, which was evidenced by the evolution of the intense plasmon absorption band originating from silver. Scanning electron microscopy indicated that the particles formed in the multilayer films possessed good monodispersity and stability, thanks to the surrounding polymers. X-ray photoelectron spectroscopy further confirmed the presence of the main components (such as DNA and metallic silver) of the nanocomposite films. In addition, we show that the size of the metal nanoparticles and the optical property of the film could be readily tuned by manipulating the assembly conditions. Furthermore, the feasibility of the as-prepared nanocomposite films functioning as a surface-enhanced Raman scattering active substrate for sensing purposes was investigated, and the results showed great enhancement of the Raman signal of two probe molecules, Rhodamine 6G and 4-aminothiophenol.  相似文献   

13.
This study describes the preparation of mucoadhesive chitosan nanoparticles containing metronidazole (MZ) intended for colon‐specific delivery. The chitosan nanoparticles were prepared by the ionic gelation method and their in vitro properties were studied. The release profiles of MZ from the nanoparticles were determined by UV–Vis absorption measurement at λmax 278 nm. Scanning electron microscopy was used for morphology observation. The nanoparticles exhibited mucoadhesive properties, which diminished with increasing drug content. The nanoparticles with a particle size range between 200 and 300 nm exhibited excellent mucoadhesive properties. The results show that the formulated nanoparticles have succeeded in controlling the release of MZ over a 12‐hr period. In conclusion, the release of MZ was found to be dependent upon the composition of the nanoparticles, the ratio of the components and possible particle size, as well as bioadhesive ability. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Summary New metal complexes [M(NNNS)X] (M = NiII, CuII, ZnII and CdII; NNNS = anion of the quadridentate ligands formed from S-methyl--N-(2-aminophenyl)-methylenedithiocarbazate and pyridine-2-aldehyde or 6-methylpyridine-2-aldehyde; X = Cl, NCS, NO3 or I) and [Co(NNNS)Cl2]·2H2O have been prepared and characterized by elemental analysis and conductance measurements. Magnetic and spectroscopic evidence support a five-coordinate structure for [M(NNNS)X] (M = NiII, CuII, ZnII and CdII; X = Cl, NCS) and a squareplanar structure for [Ni(NNNS)]X (X = NO3 or I). The [Co(NNNS)Cl3]·2H2O complex is low-spin and octahedral. The Schiff bases and some of their metal complexes were tested against three pathogenic fungi, Alternaria alternata, Curvularia geniculata and Fusarium palidoroseum. The metal complexes are less fungitoxic than the free ligands.  相似文献   

15.
Composite membranes were prepared by chemical polymerization of a thin layer of polyaniline (PANI) in the presence of a high oxidant concentration on a single face of a sulfonated cation-exchange membrane (CEM) and quaternary aminated anion-exchange membrane (AEM). IR and SEM studies for both types of membranes confirmed PANI loading on the ion-exchange membranes. PANI composite ion-exchange membranes were characterized as a function of the polymerization time by ion-exchange capacity, coating density, and membrane conductance measurements. Membrane potential measurements were performed in various electrolyte solutions in order to observe the selectivity of these membranes for different types of counterions. Membrane potential data in conjunction with membrane conductance data was interpreted on the basis of frictional considerations between membrane matrix and solute. Electrodialysis experiments, using PANI composite ion-exchange membranes with 4 h polymerization time, were performed in single and mixed electrolyte solutions for observing electromigration of solute across PANI composite ion-exchange membranes. Relative dialytic rates of Na(2)SO(4), CaCl(2), and CuCl(2) were estimated with reference to NaCl on the basis of electrodialysis experiments and it was concluded that it is possible to separate different electrolytes using PANI composite ion-exchange membranes.  相似文献   

16.
陆云 《高分子科学》2015,33(5):732-742
Composites of polyaniline(PAn) and epoxide polysiloxane(EPSi) are reported for the first time. EPSi is designed, synthesized and N-grafted onto the PAn backbone through covalent bonds. As-prepared EPSi-g-PAn composites are soluble in organic solvents and the corresponding films can be easily produced via a simple solution-casting procedure. The composite films combine the mechanical characteristics of EPSi and the chemical properties of PAn, enabling the facile introduction of the noble metal particles. The successful fabrication of the composites is confirmed by the investigation of the molecular structure, crystalline structure and microstructure of the materials. The resulting composite films containing noble metal particles are employed as the catalysts for the hydrogenation of phenol to produce cyclohexanone, which exhibit the convenience and recyclability for usage as well as the high catalytic activities, including the conversion ratio of 97%-100% and the selectivity as high as 84%-98%. The present work not only provides a new method to improve the processability of the conducting polymers but also describes a kind of composite materials that may display outstanding preformances in industrial catalysis.  相似文献   

17.
通过高压均质法制备包载大麻二酚(CBD)的纳米结构脂质载体(CBD-NLC),并考察其载药量、包封率、平均粒径、Zeta电位、长期储存稳定性等物理化学性质,筛选获得CBD-NLC最佳配方。在优化条件下制备的CBD-NLC平均粒径为163.7±1.3nm,多分散性指数(PDI)为0.14±0.02,包封率和载药量分别为95.5±1.0%和9.8±0.1%。通过透射电镜、傅里叶变换红外光谱、差示量热扫描、X射线衍射对CBD-NLC进行表征,结果表明,CBD被很好地负载在NLC中,CBD-NLC主要为球形结构。与文献报道相比,纳米结构脂质载体能够包载CBD,具有较好的载药量和包封率,可解决CBD的溶解性及稳定性问题,提高CBD的有效利用度。制备的CBD-NLC可用去离子水以任意比例稀释,具有良好的稳定性,便于其在医药产品中的应用。  相似文献   

18.
We report, in this study, the preparation and physical characterization of the peripherally functionalized ionophore ligand, 4,5-bis(6-hydroxyhexan-3ylthio)-1,2-dicyanobenzene (1) and its branched thioalcohol-substituted phthalocyanines, 2,3,7,8,12,13,17,18-octakis{6-hydroxyhexan-3-ylthio)-metal (II) or (III) phthalocyanines {M{Pc[SCH(C3H7)(C2H5OH)]8} {M = Pb(II) (2), Zn(II) (3), Cu(II) (4), Co(II) (5) and Mn(III), X = Cl (6)} which can selectively bind soft-metal ions such as silver (I) and palladium (II). It was observed by means of UV–Vis absorption spectrophotometry that the aggregates formed lead to a low solubility of the phthalocyanines in protic solvents, such as low molecular alcohols. However, the addition of AgNO3 and Na2PdCl4 into a THF–MeOH solution of {M{Pc[SCH(C3H7)(C2H5OH)]8X} {M = Pb(II) (2), Zn(II) (3), Cu(II) (4), Co(II) (5) and Mn(III), X = Cl (6)} induced optical changes, which indicated the formation of twisted H-type dimers (blue shift, face-to-face fashion) of {M{Pc[SCH(C3H7)(C2H5OH)]8} complexes, bound by four PdCl2 and AgNO3 units in THF solution. Elemental analysis data, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/MS), FT-IR, 1H, 13C NMR, and UV–Vis spectral data were used as complementary techniques. Voltammetry and in situ spectroelectrochemistry of the complexes were performed on Pt in DMSO/TBAP. The first reduction and oxidation processes of 5 were found to be split due to the presence of facile equilibria between the species coordinated differently at axial positions. The Mn(III)Pc(−2)X complex (6) displayed well-defined colour changes during its reduction processes. The redox behaviour of the Mn(III)Pc(−2)X complex was observed to be affected significantly by the existence of oxygen in solution due to the formation of μ-oxo MnPc species, Mn(III)Pc–O–PcMn(III). This effect was clarified well by in situ spectroelectrochemical measurements.  相似文献   

19.
In this work polystyrene based strontium phosphate membranes (SPMs) were prepared by applying different pressures. The membrane potential is measured with uni-univalent electrolytes (KCl, NaCl, and LiCl) solutions using saturated calomel electrodes (SCEs). The effective fixed charge density of these membranes is determined by the Torell, Meyer and Sievers method and it showed the dependence of membrane potential on the porosity, the charge on the membrane matrix, charge and size of permeating ions. The membranes are characterized by X-ray diffraction, scanning electron microscopy and IR spectroscopy. The order of surface charge density for electrolytes is KCl > NaCl > LiCl. Other parameters such as transport number, distribution coefficient, charge effectiveness and related parameters are calculated. The membrane was found to be mechanically stable, and can be operated over a wide pH range.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号