首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
LiFePO4/carbon complexes were prepared by electrospinning to improve rate performance at high C-rate and their electrochemical properties were investigated to be used as a cathode active material for lithium ion battery. The LiFePO4/carbon complexes were prepared by the electrospinning method. The prepared samples were characterized by SEM, EDS, XRD, TGA, electrometer, and electrochemical analysis. The LiFePO4/carbon complexes prepared have a continuous structure with carbon-coated LiFePO4 and the LiFePO4 in LiFePO4/carbon complex has improved thermal stability from carbon coating. The conductivity of LiFePO4/carbon complex heat-treated at 800 °C is measured as 2.23 × 10?2 S cm?1, which is about 106–107 times more than that of raw LiFePO4. The capacity ratio of coin cell manufactured from raw LiFePO4 is 40%, whereas the capacity ratio of coin cell manufactured from LiFePO4/carbon complex heat-treated at 800 °C is 61% (10 C/0.1 C). The improved rate performance of LiFePO4/carbon complex heat-treated at 800 °C is due to the carbon coating and good electrical connection.  相似文献   

2.
Using the cheap raw materials lithium carbonate, iron phosphate, and carbon, LiFePO4/C composite can be obtained from the carbothermal reduction method. X-ray diffraction (XRD) and scanning electronic microscope (SEM) observations were used to investigate the structure and morphology of LiFePO4/C. The LiFePO4 particles were coated by smaller carbon particles. LiFePO4/C obtained at 750 °C presents good electrochemical performance with an initial discharge capacity of 133 mAh/g, capacity retention of 128 mAh/g after 20 cycles, and a diffusion coefficient of lithium ions in the LiFePO4/C of 8.80?×?10?13 cm2/s, which is just a little lower than that of LiFePO4/C obtained from the solid-state reaction (9.20?×?10?13 cm2/s) by using FeC2O4 as a precursor.  相似文献   

3.
Carbon-coated LiFePO4 cathode materials were prepared by a solid-state method incorporating different sizes of polystyrene (PS) spheres as carbon sources. In scanning electron microscope images, small PS spheres appear more effective at preventing aggregation of LiFePO4 particles. From transmission electron microscopy images, it was found that the LiFePO4 particles were completely uniformly coated with 5-nm carbon layer when the carbon source was 0.22 μm PS spheres. When the size of PS sphere was increased to 2.75 μm, a network of carbon was formed and wrapped around the LiFePO4 to create a conductive web. Raman spectroscopy and four-point probe conductivity measurement showed that using larger sizes of PS spheres as carbon sources leads to greater conductivity of LiFePO4/C. The LiFePO4 precursor sintered with 0.22 μm PS spheres delivered an initial discharge capacity of 145 mAh g?1 at a 0.2 C rate, but it only sustained 289 cycles at 80% capacity. When the diameter of PS spheres was increased to 2.75 μm, the discharge capacity of LiFePO4/C decreased, but the cycle life reached 755 cycles, the highest number in this work probably due to the network formation of carbon wrapping around LiFePO4 particles.  相似文献   

4.
A solid-state reaction process with poly(vinyl alcohol) as the carbon source is developed to synthesize LiFePO4-based active powders with or without modification assistance of a small amount of Li3V2(PO4)3. The samples are analyzed by X-ray diffraction, scanning/transmission electron microscopy, and Raman spectroscopy. It is found that, in addition to the minor effect of a lattice doping in LiFePO4 by substituting a tiny fraction of Fe2+ ions with V3+ ions, the change in the form of carbon coating on the surface of LiFePO4 plays a more important role to improve the electrochemical properties. The carbon changes partially from sp3 to sp2 hybridization and thus causes the significant rise in electronic conductivity in the Li3V2(PO4)3-modified LiFePO4 samples. Compared with the carbon-coated baseline LiFePO4, the composite material 0.9LiFePO4·0.1Li3V2(PO4)3 shows totally different carbon morphology and much better electrochemical properties. It delivers specific capacities of 143.6 mAh g?1 at 10 C rate and 119.2 mAh g?1 at 20 C rate, respectively. Even at the low temperature of ?20 °C, it delivers a specific capacity of 118.4 mAh g?1 at 0.2 C.  相似文献   

5.
Although LiFePO4 (LFP) is considered to be a potential cathode material for the lithium-ion batteries, its rate performance is significantly restricted by sluggish kinetics of electrons and lithium ions. Several attempts have been made so far to improve the performance of LiFePO4 by reducing the grain size, doping with aliovalent atoms, and coating conductive materials such as carbon or RuO2. We report here synthesis of LFP nanoplates by solvothermal method, tailoring the thickness as well as carbon coverage at surfaces to explore their influence on the storage performance. Due to the fact that Li+ ion diffuses along the b-axis, solvothermal method was aimed to control the thickness of nanoplates across the b-axis. We synthesized several nanoplates with various plate thicknesses along b-axis; among those, nanoplates of LFP with ~30-nm-thick b-axis having thin (2–5 nm) and uniform layer of carbon coating exhibits high storage capacity as well as high rate performances. Thus, a favorable morphology for LiFePO4 has been achieved via solvothermal method for fast insertion/extraction of Li+ as compared to spherical nanoparticles of carbon-coated LFP. Galvanostatic cycling shows a capacity of 164?±?5 mAh g?1 at 0.1 C rate, 100?±?5 mAh g?1 at 10 C rate, and 46?±?5 mAh g?1 at 30 C rate, with excellent capacity retention of up to 50 cycles. Further attempts have been made to synthesize LiMnPO4 (LMP) as well as Li(Fe1???x Mn x )PO4/C (x?=?0.5) nanoplates using solvothermal method. Although LiMnPO4 does not exhibit high storage behavior comparable with that of LiFePO4, the mixed systems have shown an impressive storage performance.  相似文献   

6.
Pure LiFePO4 and LiNi x Fe1?x PO4/C (x?=?0.00–0.20) nanocomposite cathode materials have been synthesized by cheap and convenient sol–gel-assisted carbothermal reduction method. X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy, and inductively coupled plasma have been used to study the phase, morphology, and chemical composition of un-doped and Ni-doped materials. XRD patterns display the slight shrinkage in crystal lattice of LiFePO4 after Ni2+ doping. The SEM images have revealed that Ni-doped particles are not agglomerated and the particle sizes are practically homogeneously distributed. The particle size is found between 50 and 100 nm for LiNi0.20Fe0.80PO4/C sample. The discharge capacity at 0.2 C rate has increased up to 155 mAh g?1 for the LiNi0.05Fe0.95PO4/C sample and good capacity retention of 99.1 % over 100 cycles, while that of the unsubstituted LiFePO4/C and pure LiFePO4 has showed only 122 and 89 mAh g?1, respectively. Doping with Ni has a noticeable effect on improving its electrical conductivity. However, serious electrochemical declension will occur when its doping density is beyond 0.05 mol LiNi0.20Fe0.80PO4/C electrode shows only 118 mAh g?1, which is less than un-doped LiFePO4/C sample at 0.2 C. The cycling voltammogram demonstrates that Ni-doped LiNi0.05Fe0.95PO4/C electrode has more stable lattice structure, enhanced conductivity, and diffusion coefficient of Li+ ions, in which Ni2+ is regarded to act as a column in crystal lattice structure to prevent the collapse during cycling process.  相似文献   

7.
We have studied LiFePO4/C nanocomposites prepared by sol-gel method using lauric acid as a surfactant and calcined at different temperatures between 600 and 900 °C. In addition to the major LiFePO4 phase, all the samples show a varying amount of in situ Fe2P impurity phase characterized by x-ray diffraction, magnetic measurements, and Mössbauer spectroscopy. The amount of Fe2P impurity phase increases with increasing calcination temperature. Of all the samples studied, the LiFePO4/C sample calcined at 700 °C which contains ~15 wt% Fe2P shows the least charge transfer resistance and a better electrochemical performance with a discharge capacity of 136 mA h g?1 at a rate of 1 C, 121 mA h g?1 at 10 C (~70 % of the theoretical capacity of LiFePO4), and excellent cycleability. Although further increase in the amount of Fe2P reduces the overall capacity, frequency-dependent Warburg impedance analyses show that all samples calcined at temperatures ≥700 °C have an order of magnitude higher Li+ diffusion coefficient (~1.3?×?10?13 cm2 s?1) compared to the one calcined at 600 °C, as well as the values reported in literature. This work suggests that controlling the reduction environment and the temperature during the synthesis process can be used to optimize the amount of conducting Fe2P for obtaining the best capacity for the high power batteries.  相似文献   

8.
Olivine LiFePO4/C cathode materials for lithium ion batteries were synthesized using monodisperse polystyrene (PS) nano-spheres and other carbon sources. The structure, morphology, and electrochemical performance of LiFePO4/C were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), galvanostatic charge–discharge tests, electrochemical impedance spectroscopy (EIS) measurements, and Raman spectroscopy measurements. The results demonstrated that LiFePO4/C materials have an ordered olivine-type structure with small particle sizes. Electrochemical analyses showed that the LiFePO4/C cathode material synthesized from 7 wt.% PS nano-spheres delivers an initial discharge capacity of 167 mAh g-1 (very close to the theoretical capacity of 170 mAh g-1) at 0.1 C rate cycled between 2.5 and 4.1 V with excellent capacity retention after 50 cycles. According to Raman spectroscopy and EIS analysis, this composite had a lower I D/I G, sp 3/sp 2 peak ratio, charge transfer resistance, and a higher exchange current density, indicating an improved electrochemical performance, due to the increased proportion of graphite-like carbon formed during pyrolysis of PS nano-spheres, containing functionalized aromatic groups.  相似文献   

9.
Ordered mesoporous carbon (OMC) was used as an adsorbent for the removal of pertechnetate (TcO4 ?) anion. The maximum uptake (93 %) of TcO4 ? was obtained after 60 min of contact. The adsorption of TcO4 ? is almost pH-independent in very wide pH region (from 4.0 to 10.0). Maximum K d of 6.6 × 103 cmg?1 was found at pH 2.0. TcO4 ? interacts with carboxylic functional groups present at the surface of the OMC by displacing the OH? ions with TcO4 ? via ion exchange mechanism.  相似文献   

10.
Olivine-type LiFePO4 is one of the most promising cathode materials for lithium-ion batteries, but its poor conductivity and low lithium-ion diffusion limit its practical application. The electronic conductivity of LiFePO4 can be improved by carbon coating and metal doping. A small amount of La-ion was added via ball milling by a solid-state reaction method. The samples were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM)/mapping, differential scanning calorimetry (DSC), transmission electron microscopy (TEM)/energy dispersive X-ray spectroscopy (EDS), and total organic carbon (TOC). Their electrochemical properties were investigated by cyclic voltammetry, four-point probe conductivity measurements, and galvanostatic charge and discharge tests. The results indicate that these La-ion dopants do not affect the structure of the material but considerably improve its rate capacity performance and cyclic stability. Among the materials, the LiFe0.99La0.01PO4/C composite presents the best electrochemical behavior, with a discharge capacity of 156 mAh g?1 between 2.8 and 4.0 V at a 0.2 C-rate compared to 104 mAh g?1 for undoped LiFePO4. Its capacity retention is 80% after 497 cycles for LiFe0.99La0.01PO4/C samples. Such a significant improvement in electrochemical performance should be partly related to the enhanced electronic conductivities (from 5.88?×?10?6 to 2.82?×?10?3 S cm?1) and probably the mobility of Li+ ion in the doped samples. The LiFe0.99La0.01PO4/C composite developed here could be used as a cathode material for lithium-ion batteries.  相似文献   

11.
The modification techniques of applying carbon coating on particle surface and doping vanadium at Fe site were applied to make the LiFePO4 cathode materials achieve high rate performance in lithium ion batteries. To design and synthesize these LiFe(1?x)V x PO4/C (x?=?0, 0.02, 0.05, or 0.08) composites, an aqueous solution–evaporation method was taken, in which every kind of raw material was distributed at a high degree of uniformity. The LiFe0.95V0.05PO4/2.57 wt% C composite displayed the best electrochemical performances. At rates of 0.1, 0.5, 2, 5, and 10 C (1 C?=?170 mAg?1), it delivered a discharge capacity of 157.8, 156.9, 149, 139.6, and 130.1 mAh g?1, respectively. The composite exhibited perfect cycle stabilities as well, maintaining 100 % (0.5 C), 99.7 % (2 C), 98.9 % (5 C), and 96.6 % (10 C) of the first discharge capacity after 100 cycles at different rates, respectively.  相似文献   

12.
LiFePO4/C composites are prepared by using two types of carbon source: one using polymer (PAALi) and the other using sucrose. The physical characteristics of LiFePO4/C composites are investigated by X-ray diffraction), scanning electron microscopy, BET, laser particle analyzer, and Raman spectroscopy. Their electrochemical properties are characterized by cyclic voltammograms, constant current charge–discharge, and electrochemical impedance spectra. These analyses indicate that the carbon source and carbon content have a great effect on the physical and electrochemical performances of LiFePO4/C composites. An ideal carbon source and appropriate carbon content can effectively increase the lithium-ion diffusion coefficient and exchange current density, decrease the charge transfer resistance (R ct), and enhance the electrochemical performances of LiFePO4/C composite. The results show that PAALi is a better carbon source for the synthesis of LiFePO4/C composites. When the carbon content is 4.11 wt.% (the molar ratio of PAALi/Li2C2O4 was 2:1), as-prepared LiFePO4/C composite shows the best combination between electrochemical performances and tap density.  相似文献   

13.
Nanoscale LiFePO4/C particles are synthesized using a combination of electrospinning and annealing. The important advantages of electrospinning technique are the production of separated nanofiber precursor, enabling the precursor particles arrangement to be changed, impeding the growth and agglomeration of the LiFePO4 particles during the heat treatment, and contributing to the formation of nanosized LiFePO4 particles. In this study, polyvinylpyrrolidone (PVP) is used as the fiber-forming agent in the electrospinning method, and also provides a reducing agent and carbon source. In situ carbon-coated LiFePO4 particles are obtained by the pyrolysis of PVP during the thermal treatment. The LiFePO4 particles are coated with and connected by interlaced carbons, and are uniformly distributed in the size range 50–80?nm. It is found that the as-prepared nanoscale LiFePO4/C composite has a desirable electrochemical performance. It has discharge capacities of 163.5?mA?h g?1 and 110.7?mA?h g?1 at rates of 0.1?C and 10?C, respectively. In addition, this cathode has excellent cyclability with a capacity loss of less than 3?% at 0.1?C and 5?% at 5?C after 500 cycles. An effective synthesis and processing method is presented for obtaining nanosized LiFePO4 with high electrochemical performance.  相似文献   

14.
In the present study, carbon-coated lithium iron phosphate (LiFePO4/C) is prepared directly by a polyol-assisted pyro-synthesis performed under reaction times of a few seconds in open-air conditions. The polyol solvent, tetraethylene glycol (TTEG), acts as a low-cost fuel to facilitate combustion and the released exothermic energy promotes the nucleation and growth processes of the olivine nanoparticles. In addition, phosphoric acid (used as the phosphorous source) acts as a catalyst to accelerate polyol carbonization. The structure analysis of the as-prepared LiFePO4/C using X-ray, neutron diffraction and 7Li NMR studies suggested the efficacy of the rapid technique to produce highly crystalline phase-pure olivine nanocrystals. The electron microscopy and particle-size distribution studies revealed that the average particle diameters lie below 100 nm and confirmed the presence of a surface carbon layer of 2–3 nm thickness. The thermal and elemental studies indicated that the carbon content in the sample was approximately 5 %. The prepared LiFePO4/C cathode delivered capacities of 162 mA h g-1 at 0.1 °C rates with impressive capacity retention for extended cycling. The polyol-assisted pyro-synthesis, which evades the use of external energy sources, is not only a straightforward, simple and timely approach but also offers opportunities for large-scale LiFePO4/C production.  相似文献   

15.
The olivine-type samarium-doped LiFe1 ? x Sm x PO4/C (x?=?0, 0.01, 0.02, 0.03, 0.04, and 0.05) composites were synthesized via liquid-phase precipitation reaction combined with the high-temperature solid-state method. The structure, morphology, and electrochemical performance of the samples were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscope, energy dispersive spectroscopy, galvanostatic charge–discharge, galvanostatic intermittent titration technique, and electrochemical impedance spectroscopy. The results showed that the small amount of Sm3+ ion-doped can keep the olivine microstructure of LiFePO4, modify the particle morphology, decrease polarization overpotential and charge transfer resistance, and enhance exchange current density, thus improve the electrochemical performance of the LiFePO4/C. However, the large doped content of Sm3+ ion can form more SmPO4, which can weaken the electrochemical performance of LiFePO4/C. Among all the doped samples, LiFe0.99Sm0.01PO4/C showed the best rate capacity, cycling stability, and low temperature performance. The LiFe0.99Sm0.01PO4/C sample exhibited the initial discharge capacity of 148.1, 133.4, 117.5, and 106.6 mAh g?1 at 1C, 2C, 5C, and 10C, respectively. In addition, the discharge capacity of the material was 94.8 mAh g?1 after 800 cycles at 10C. Moreover, the initial discharge capacity of 0.1C, 0.2C, 0.5C, and 1C were 104.4, 96.2, 53.9, and 50.8 mAh g?1 at ?20 °C.  相似文献   

16.
The formation of binary and ternary complexes of the divalent transition metal ions CuII, NiII, ZnII, and CoII with some triazoles [1,2,4-triazole (TRZ), 3-mercapto-1,2,4-triazole, and 3-amino-1,2,4-triazole], and the biologically important aliphatic dicarboxylic acids adipic, succinic, malic, malonic, maleic, tartaric, and oxalic acid, was investigated in aqueous solutions using the potentiometric technique at 25 °C and I = 0.10 mol·dm?3 NaNO3. The formation of 1:1 and 1:2 binary complexes and 1:1:1 ternary complexes was inferred from the corresponding titration curves. The formation of ternary complexes occurs in a stepwise manner with the carboxylic acids acting as primary ligands. The ionization constants (pK a) of the investigated ligands were redetermined and used for determining the stability constants of the binary and ternary complexes formed in solution. The order of stability of the ternary complexes was investigated in terms of the nature of the triazole, carboxylic acid and metal ion used. The ?log10 K values, percent relative stabilization, and log10 X for the ternary complexes have been evaluated and discussed. The concentration distributions of the various species formed in solution were evaluated. The ionization constants of TRZ and malic acid and stability constants of their binary and ternary complexes with CuII, NiII, and CoII metal ions were studied at four different temperatures (15, 25, 35, and 45 °C) and the corresponding thermodynamic parameters have been evaluated and discussed. The complexation behavior of ternary complexes was ascertained using conductivity measurements. In addition, the formation of ternary complexes in solution has been confirmed by using UV–visible spectrophotometry.  相似文献   

17.
LiFePO4/C and LiYb0.02Fe0.98PO4/C composite cathode materials were synthesized by simple solution technique. The samples were characterized by X-ray diffraction, scanning electron microscope, and thermogravimetric–differential thermal analysis. Their electrochemical properties were investigated by cyclic voltammetry, four-point probe conductivity measurements, and galvanostatic charge and discharge tests. The carbon-coated and Yb3+-doped LiFePO4 sample exhibited an enhanced electronic conductivity of 1.9 × 10?3 Scm?1, and a specific discharge capacity of 146 mAhg?1 at 0.1 C. The results suggest that the improvement of the electrochemical performance can be attributed to the ytterbium doping, which facilitates the phase transformation between triphylite and heterosite during cycling, and the conductivity improvement by carbon coating.  相似文献   

18.
The xLiFePO4·yLi3V2(PO4)3/C cathode materials are synthesized by a sol spray drying method. X-ray diffraction results reveal that the xLiFePO4·yLi3V2(PO4)3/C (x,y?≠?0) composites are composed of LiFePO4 and Li3V2(PO4)3 phases, and no impurities are detected. The samples show spherical particles with the size of 0.5–5 μm, and the tap densities of all the samples are higher than 1.5 g cm?3. Electrochemical tests show that the xLiFePO4·Li3V2(PO4)3/C (x,y?≠?0) composites exhibit much better performance than the single LiFePO4/C or Li3V2(PO4)3/C. Among all the samples, 3LiFePO4·Li3V2(PO4)3/C possesses the best comprehensive performance in terms of the discharge capacity, average working voltage, and rate capability. At 1, 5, and 10 C rates, the sample shows first discharge capacities of 152.0, 134.3, and 116.8 mAh g?1 and capacity retentions of 99.2, 98.2, and 97.7 % after 100 cycles, respectively. The excellent electrochemical performance of micron-sized xLiFePO4·Li3V2(PO4)3/C (x,y?≠?0) powders is owing to the homogeneous mixing of reactants at a molecular level by sol spray drying, the incorporation of fast ion conductor Li3V2(PO4)3, and the mutual doping in LiFePO4 and Li3V2(PO4)3.  相似文献   

19.
The standard potentials of the silver-silver iodide electrode were measured in 10,20,30 and 40% (w/w) dioxane-water mixtures at 15,25,35 and 45°C. These values have been used to determine the thermodynamic quantities ΔGt°, ΔSt°, ΔHt° for the transfer of H+I? from water to various dioxane-water mixtures. The ionic ΔGt° values for H+, Cl?, Br? and I? are determined using Feakins method. The chemical and electrical contributions of ΔGt° are also calculated using the method proposed by Roy and co-workers. The significance of these thermodynamic functions is discussed in relation to the acid—base character of the solvents.  相似文献   

20.
Zn|ZnI2| iodine galvanic cells using carbon plate electrodes coated with polymer + carbon powder mixtures are rechargeable with minor self-discharge when a positive ion exchanging film is used as the separator. Among the polymers tested (nylon-6, Poly(tetrahydrofuran), poly(acrylonitrile), poly(methly methacrylate), poly(vinly Alcohol), poly(N-vinylpyrrolidone), and poly(4-vinylpridine)), nylon-6 and poly(tetrahydrofuran) have the highest ability to absorb iodine and afford secondary galvanic cells showing the best rechargeability: the secondary galvanic cells are rechargeable more than 500 times with about 100% current efficiency and 81–83% energy efficiency when charged and discharged at 2 mA/cm2 at 25°C. The average charging and discharging voltages of the secondary cell using nylon-6 are 1.42 and 1.18 V, respectively. The cell prepared by using nylon-6 generates about 80 mA/cm2 of an initial short-circuit current and 0.3–80 mA/cm2 of a steady-state short-circuit current when the cell is dipped into a aqueous solution containing I?3. The steady-state short-circuit current increases with increasing I?3 concentration and a linear correlation holds between the logarithm of the steady-state short-circuit current and the logarithm of [I?3] in the range of [I?3] = 0.05–0.5 mol/1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号