首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnetic, elastic, magnetoelastic, transport, and magnetotransport properties of the Eu0.55Sr0.45MnO3 ceramics have been studied. A break was detected in the temperature dependence of electrical resistivity ρ(T) near the temperature of the magnetic phase transformation (41 K), with the material remaining an insulator down to the lowest measurement temperature reached (ρ=106 Ω cm at 4.2 K). In the interval 4.2≤T≤50 K, the isotherms of the magnetization, volume magnetostriction, and ρ were observed to undergo jumps at the critical field HC1, which decreases with increasing T. For 50≤T≤120 K, the jumps in the above curves persist, but the pattern of the curves changes and HC1 grows with increasing T. The magnetoresistance Δρ/ρ = (ρ H H=0)/ρ H is positive for H<HC1 and passes through a maximum at 41 K, where Δρ/ρ = 6%. For H>HC1, the magnetoresistance is negative, passes through a minimum near 41 K, and reaches a colossal value of 3×105 % at H=45 kOe. The volume magnetostriction is negative and attains a giant value of 4.5×10?4atH=45 kOe. The observed properties are assigned to the existence of three phases in Eu0.55Sr0.45MnO3, namely, a ferromagnetic (FM) phase, in which carriers are concentrated because of the gain in s-d exchange energy, and two antiferromagnetic (AFM) phases of the A and CE types. Their fractional volumes at low temperatures were estimated to be as follows: ~3% of the sample volume is occupied by the FM phase; ~67%, by the CE-type AFM phase; and ~30%, by the A-type AFM phase.  相似文献   

2.
We report similarities and differences of the transport features in the spin density wave (SDW) and in the field-induced SDW (FISDW) phases of the quasi-one-dimensional compound (TMTSF)2PF6. As temperature decreases below ≈2 K, the resistance in both phases exhibits a maximum and a subsequent strong drop. However, the characteristic temperature of the R(T) maximum and its scaling behavior in different magnetic fields B are evidence that the nonmonotonic R(T) dependences have different origin in SDW and FISDW regions of the phase diagram. We also found that the borderline T0(B, P) which divides the FISDW region of the P-B-T phase diagram into the hysteresis and nonhysteresis domains terminates in the N=1 subphase; the borderline thus has no extension to the SDW N=0 phase.  相似文献   

3.
In this study CuInSe2 and CuInS2 thin films were prepared onto ITO glass substrate using the electrodeposition technique in aqueous solution. The electrodeposited films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis. The annealing effects on electrodeposited precursors were investigated. The chalcopyrite structure of CuInSe2/CuInS2 showed an enhancement of crystallinity after subsequent selenization/sulfurization treatment in Se/S atmosphere, respectively. XRD and SEM studies revealed a dramatic improvement of the crystalline quality of CIS films after annealing treatments. Mott–Schottky measurements were used to assess the conductivity type of the films and their carrier concentration. The prepared samples underwent an etching process to remove the binary accumulated Cu2?x(Se,S) phases shown in FESEM pictures. This etching process has shown a noticeable decrease in both, the flat band potential, Vfb (V), and the number of acceptors, NA (cm?3) in selenized CuInSe2 and sulfurized CuInS2 samples.  相似文献   

4.
The phase transition for the (2 + 1)-dimensional spin-S = 1XY model was investigated numerically. Because of the boson-vortex duality, the spin stiffness ρ s in the ordered phase and the vortex-condensate stiffness ρ v in the disordered phase should have a close relationship. We employed the exact diagonalization method, which yields the excitation gap directly. As a result, we estimate the amplitude ratios ρ s,v /Δ (Δ: Mott insulator gap) by means of the scaling analyses for the finite-size cluster with N ≤ 22 spins. The ratio ρ s /ρ v admits a quantitative measure of deviation from selfduality.  相似文献   

5.
The temperature behavior of I-U curves and the field and temperature dependences of the electrical resistivity and dielectric permittivity of crystals of the LiCu2O2 phase have been studied. It was established that the crystals belong to p-type semiconductors and that their static resistivity in the range 80–260 K follows the Mott law ρ=Aexp(T0/T)1/4 describing variable-range hopping over localized states. At comparatively low electric fields, the crystals exhibit threshold switching and characteristic S-shaped I-U curves containing a region of negative differential resistivity. In the critical voltage region, jumps in the conductivity and dielectric permittivity are observed. Possible mechanisms of the disorder and electrical instability in these crystals are discussed.  相似文献   

6.
T. Ruokola  J. Kopu 《JETP Letters》2005,81(12):634-638
Motivated by recent theoretical and experimental interest in the subject, we derive the condition of interfacial Kelvin-Helmholtz instability for a system of two flowing superfluids (one sliding on the other). The tensor structure of superfluid densities in anisotropic superfluids, such as 3He-A and also 3He-B under an external magnetic field, is properly taken into account. The consequences relevant to experiments on the A–B phase boundary in superfluid 3He are discussed.  相似文献   

7.
We have analyzed the temperature and magnetic-field dependences of resistivity ρ(T, H) of semiconducting compound Pb0.45Sn0.55Te doped with 5 at % In under a hydrostatic compression at P < 12 kbar. It is found that the temperature dependence ρ(T) at all pressures at T < 100 K is exponential with the activation energy decreasing upon an increase in pressure; this is accompanied with a superconducting transition on the ρ(T) and ρ(H) dependences at P > 4.8 kbar at T > 1 K (T c = 1.72 K at a level of 0.5ρ N at P = 6.8 kbar). We consider the model describing the low-temperature “dielectrization” of the semiconducting solid solution and the formation of the superconducting state upon an increase in the hydrostatic compression P > 4 kbar.  相似文献   

8.
The spectral and power characteristics of radiation of the second positive system of nitrogen (C 3Π u B 3Π g ) in Ar-N2 and Ar-N2-Cl2 mixtures excited by barrier discharge have been studied experimentally. Addition of argon to N2 increased the radiation power by sixfold. In the triple mixture Ar-N2-Cl2 = 210/0.5/0.005, minor chlorine additions increased the intensity of the C 3Π u B 3Π g transition by 26% compared to Ar-N2 mixtures. Radiation power density of 2.7 mW/cm2 has been achieved. In both binary and triple mixtures, the second positive system of nitrogen was the major contributor to radiation, while the contributions of the fourth positive system of N 2 * (D 3Σ u + B 3Π g ), the Vegard-Kaplan transition of N 2 * (A 3Σ u + X 1Σ g + ), and the D′ → A′ band of Cl 2 * were negligibly small.  相似文献   

9.
G. Baskaran 《Pramana》2009,73(1):61-112
Discovery of high T c superconductivity in La2?x Ba x CuO4 by Bednorz and Muller in 1986 was a breakthrough in the 75-year long search for new superconductors. Since then new high T c superconductors, not involving copper, have also been discovered. Superconductivity in cuprates also inspired resonating valence bond (RVB) mechanism of superconductivity. In turn, RVB theory provided a new hope for finding new superconductors through a novel electronic mechanism. This article first reviews an electron correlation-based RVB mechanism and our own application of these ideas to some new noncuprate superconducting families. In the process we abstract, using available phenomenology and RVB theory, that there are five directions to search for new high T c superconductors. We call them five-fold way. As the paths are reasonably exclusive and well-defined, they provide more guided opportunities, than before, for discovering new superconductors. The five-fold ways are (i) copper route, (ii) pressure route, (iii) diamond route, (iv) graphene route and (v) double RVB route. Copper route is the doped spin-½ Mott insulator route. In this route one synthesizes new spin-½ Mott insulators and dopes them chemically. In pressure route, doping is not external, but internal, a (chemical or external) pressure-induced self-doping suggested by organic ET-salts. In the diamond route we are inspired by superconductivity in boron-doped diamond and our theory. Here one creates impurity band Mott insulators in a band insulator template that enables superconductivity. Graphene route follows from our recent suggestion of superconductivity in doped graphene, a two-dimensional broadband metal with moderate electron correlations, compared to cuprates. Double RVB route follows from our recent theory of doped spin-1 Mott insulator for superconductivity in iron pnictide family.  相似文献   

10.
The magnetostriction of the NiFeCrO4 ferrite is investigated for the first time. It is found that the frustration of magnetic coupling occurs only in the B sublattice of the NiFeCrO4 ferrite, whereas the A sublattice has a usual magnetic structure. The inference is made that the frustration of magnetic coupling in the B sublattice is caused not only by the negative direct BB exchange interaction Cr B 3+ -Cr B 3+ but also by the positive indirect AB exchange interaction Fe A 3+ -O2?-Cr B 3+ . Reasoning from the experimental data and an analysis of the exchange interactions in the NiFeCrO4 ferrite sample, it is demonstrated for the first time that the magnetic moments of Fe A 3+ ions in this ferrite deviate from collinearity. It is established that, at low temperatures, the B sublattice of the NiFeCrO4 ferrite is responsible for the total magnetic moment n0exp.  相似文献   

11.
Temperature dependences of the absorption coefficient in A3B5 crystals before and after irradiation by electrons with an energy of 6 MeV and a dose of Ф = 2 × 1017 electron/cm2 are studied. A low-lying Ev + 0.4 eV center of a nonimpurity origin is found in both undoped GaAs crystals and those doped with various impurities (Te, Zn, Sn, Ga1–xInxAs, InP, and InP〈Fe〉).  相似文献   

12.
A doped manganite with the composition Eu0.55Sr0.45MnO3 exhibits giant negative magnetostriction and colossal negative magnetoresistance at temperatures in the vicinity of the magnetic phase transformation (T~41 K). In the temperature interval 4.2 K≤T ≤40 K, the isotherms of magnetization, volume magnetostriction, and resistivity exhibit jumps at the critical field strength Hc1, which decreases with increasing temperature. At 70 K ≤T ≤120 K, the jumps on the isotherms are retained, but the shapes of these curves change and the Hc1 value increases with the temperature. At H<Hc1, the magnetoresistance is positive and exhibits a maximum at 41 K; at H>Hc1, the magnetoresistance becomes negative, passes through a minimum near 41 K and then reaches a colossal value. The observed behavior is explained by the existence of three phases in Eu0.55Sr0.45MnO3, including a ferromagnetic (in which the charge carriers concentrate due to a gain in the s-d exchange energy) and two antiferromagnetic phases (of the A and CE types). The volumes of these phases at low temperatures are evaluated. It is shown that the colossal magnetoresistance and the giant volume magnetostriction are related to the ferromagnetic phase formed as a result of the magnetic-field-induced transition of the CE-type antiferromagnetic phase to the ferromagnetic state.  相似文献   

13.
The uniaxial strain of quasi-one-dimensional conductor whiskers of orthorhombic TaS3 at a strain higher than ε c ~ 0.8% leads to a sharp increase in the coherence of the properties of a charge density wave (CDW), which manifests itself in its motion in fields higher than threshold field E t . During uniaxial elongation, TaS3 is shown to exhibit the following unusual properties even in weak fields: Peierls transition temperature T P depends nonmonotonically on ε, one-dimensional fluctuations weaken near T P , and the coherence length of a charge density increases at T < T P . Investigations in fields higher than E t show that the ultracoherent properties of CDW exist in a wide temperature range and are retained when temperature increases up to T P . These properties of CDW make it possible to observe a sharp increase in E t near T P and an almost jumplike increase in E t at T < 90 K. The increase in E t at T P is explained by a decrease in the coherence volume of CDW because of a fluctuational suppression of the Peierls gap.  相似文献   

14.
The low-temperature specific heat C p of La(Fe0.873Co0.007Al0.12)13 compound has been measured in two states: (i) antiferromagnetic (AFM) with a Néel temperature of T N = 192 K and (ii) ferromagnetic (FM). The FM order appears at T = 4.2 K in a sample exposed to an external magnetic field with induction B C ≥ 2.5 T and is retained for a long time in a zero field at temperatures up to T*C = 23 K. The coefficient γFM in the low-temperature specific heat C = γT + βT 3 in the FM state differs quite insignificantly from that (γAFM) in the AFM state. Contributions to the low-temperature specific heat, which are related to a change in the elastic and magnetoelastic energy caused by magnetostrictive deformations, are considered.  相似文献   

15.
We employed density-functional theory (DFT) within the generalized gradient approximation(GGA) to investigate the ZrTi2 alloy, and obtained its structural phase transition,mechanical behavior, Gibbs free energy as a function of pressure, P-V equation of state,electronic and Mulliken population analysis results. The lattice parameters andP-V EOS for α, β and ω phases revealed by ourcalculations are consistent with other experimental and computational values. The elasticconstants obtained suggest that ω-ZrTi2 and α-ZrTi2 are mechanically stable, and that β-ZrTi2 is mechanically unstableat 0 GPa, but becomes more stable with increasing pressure. Our calculated resultsindicate a phase transition sequence of αωβ forZrTi2. Both thebulk modulus B and shear modulus G increase linearly withincreasing pressure for three phases. The G/B values illustrated goodductility of ZrTi2alloy for three phases, with ω<α<β at0 GPa. The Mulliken population analysis showed that the increment of d electron occupancystabilized the β phase. A low value for B '0 is the feature of EOS for ZrTi2 and this softness in the EOS isrepresentative of pressure induced s-d electron transfer.  相似文献   

16.
Light illumination of thin crystals of CDW conductor TaS3 is found to result in dramatic changes of both linear (G) and nonlinear conduction. The increase of G is accompanied by suppression of the collective conduction, growth of the threshold field E T , and appearance of the switching and hysteretic behavior in the nonlinear conduction. The effects in the nonlinear conduction are associated with increase of CDW elasticity due to illumination that leads, in particular, to the appearance of a relation E T G1/3 expected for the one-dimensional pinning.  相似文献   

17.
18.
The electron spin resonance has been measured for the first time both in the paramagnetic phase of the metallic GdB6 antiferromagnet (TN = 15.5K) and in the antiferromagnetic state (T < TN). In the paramagnetic phase below T* ~ 70 K, the material is found to exhibit a pronounced increase in the resonance linewidth and a shift in the g-factor, which is proportional to the linewidth Δg(T) ~ ΔH(T). Such behavior is not characteristic of antiferromagnetic metals and seems to be due to the effects related to displacements of Gd3+ ions from the centrosymmetric positions in the boron cage. The transition to the antiferromagnetic phase is accompanied by an abrupt change in the position of resonance (from μ0H0 ≈ 1.9 T to μ0H0 ≈ 3.9 T at ν = 60 GHz), after which a smooth evolution of the spectrum occurs, resulting eventually in the formation of the spectrum consisting of four resonance lines. The magnetic field dependence of the frequency of the resonant modes ω0(H0) obtained in the range of 28–69 GHz is well interpreted within the model of ESR in an antiferromagnet with the easy anisotropy axis ω/γ = (H 0 2 +2HAHE)1/2, where HE is the exchange field and HA is the anisotropy field. This provides an estimate for the anisotropy field, HA ≈ 800 Oe. This value can result from the dipole?dipole interaction related to the mutual displacement of Gd3+ ions, which occurs at the antiferromagnetic transition.  相似文献   

19.
Spin polarized ab initio calculations have been carried out to study the structural, electronic, elastic and thermal properties of RHg (R = Ce, Pr, Eu and Gd) intermetallic compounds in B2 structure. The calculations have been performed by using both generalized gradient approximation (GGA) and local spin density approximation (LSDA). The calculated value of lattice constant (a 0) for these compounds with GGA is in better agreement with the experimental data than those with LSDA. Bulk modulus (B), first-order pressure derivative of bulk modulus and magnetic moment (μ B ) are also presented. The energy band structure and electron density of states show the occupancy of 4f states for light as well as heavy rare earth atom. The elastic constants are predicted from which all the related mechanical properties like Poisson’s ratio (σ), Young’s modulus (E), shear modulus (G H ) and anisotropy factor (A) are calculated. The ductility or brittleness of these compounds is predicted from Pugh’s rule (B/G H ) and Cauchy pressure (C 12 ? C 44). The Debye temperature (θ D ) is estimated from the average sound velocity, which have not been calculated and measured yet.  相似文献   

20.
It is established that excess oxygen content δ influences the exchange bias (EB) in layered GdBa-Co2O5 + δ cobaltite. The EB effect arises in p-type (δ > 0.5) cobaltite and disappears in n-type (δ < 0.5) cobaltite. The main parameters of EB in GdBaCo2O5.52(2) polycrystals are determined, including the field and temperature dependences of EB field H EB , blocking temperature T B , exchange coupling energy J i of antiferromagnet–ferromagnet (AFM–FM) interface, and dimensions of FM clusters. The training effect inherent in systems with EB has been studied. The results are explained in terms of exchange interaction between the FM and AFM phases. It is assumed that the EB originates from the coexistence of Co3+ and Co4+ ions that leads to the formation of monodomain FM clusters in the AFM matrix of cobaltite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号