首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Over the last decades, colloidal suspensions have been proven as powerful model systems to reveal fundamental questions in soft matter or general physics. In this work, we will focus on the influence of interaction and confinement to the mobility of colloidal particles as well as to the transport behavior of particles over obstacles placed in a micro-channel. Both experiments are supported with Brownian dynamics simulations to complete the experimental work. The paper concludes with the investigation of the behavior of single active swimmers close to a wall.  相似文献   

2.
We have proposed a new repulsive layer model for describing the interaction between steric layers of coated cubic particles. This approach is an effective technique applicable to particle-based simulations such as a Brownian dynamics simulation of a suspension composed of cubic particles. 3D Brownian dynamics simulations employing this repulsive interaction model have been performed in order to investigate the equilibrium aggregate structures of a suspension composed of cubic haematite particles. It has been verified that Brownian dynamics employing the present steric interaction model are in good agreement with Monte Carlo results with respect to particle aggregate structures and particle orientational characteristics. From the viewpoint of developing a surface modification technology, we have also investigated a regime change in the aggregate structure of cubic particle in a quasi-2D system by means of Brownian dynamics simulations. If the magnetic particle–particle interaction strength is relatively strong, in zero applied magnetic field the particles aggregate in an offset face-to-face configuration. As the magnetic field strength is increased, the offset face-to-face structure is transformed into a more direct face-to-face contact configuration that extends throughout the whole simulation region.  相似文献   

3.
Akira Satoh 《Molecular physics》2014,112(16):2122-2137
We have investigated aggregation phenomena in a suspension composed of rod-like haematite particles by means of Brownian dynamics simulations. The magnetic moment of the haematite particles lies normal to the particle axis direction and therefore the present Brownian dynamics method takes into account the spin rotational Brownian motion about the particle axis. We have investigated the influence of the magnetic particle–field and particle–particle interactions, the shear rate and the volumetric fraction of particles on the particle aggregation phenomena. Snapshots of aggregate structures are used for a qualitative discussion and the cluster size distribution, radial distribution function and the orientational correlation functions of the direction of particle axis and magnetic moment are the focus for a quantitative discussion. The significant formation of raft-like clusters is found to occur at a magnetic particle–particle interaction strength much larger than that required for a magnetic spherical particle suspension. This is because the rotational Brownian motion has a significant influence on the formation of clusters in a suspension of rod-like particles with a large aspect ratio. An applied magnetic field enhances the formation of raft-like clusters. A shear flow does not have a significant influence on the internal structure of the clusters, but influences the cluster size distribution of the raft-like clusters.  相似文献   

4.
We study the diffusion of a quantum Brownian particle in a one-dimensional periodic potential with substitutional disorder. The particle is coupled to a dissipative environment, which induces a frictional force proportional to the velocity. The dynamics for arbitrary temperature is studied by using Feynman's influence-functional theory. We calculate the mobility to lowest order in the disorder and strength of the periodic potential. It is shown that for weak dissipation the linear mobility, which vanishes atT=0 due to localization effects, may exhibit a maximum and a subsequent minimum with increasing temperature. The relation to the diffusion of heavy particles in metals or doped semiconductors is briefly discussed.  相似文献   

5.
Using Brownian dynamics computer simulations, we show that a two-dimensional suspension of self-propelled ("active") colloidal particles crystallizes at sufficiently high densities. Compared to the equilibrium freezing of passive particles, the freezing density is both significantly shifted and depends on the structural or dynamical criterion employed. In nonequilibrium the transition is accompanied by pronounced structural heterogeneities. This leads to a transition region between liquid and solid in which the suspension is globally ordered but unordered liquidlike "bubbles" still persist.  相似文献   

6.
《Physics letters. A》2006,359(2):90-98
We study the motion of two Brownian particles coupled by a bistable potential on a periodically rocked ratchet. Bistable coupling symmetrizes the two particles and admits a richer dynamics that cannot be found with linear coupling or a single particle. Depending on the coupling strength and the equilibrium distance we find different step patterns and current reversals. We present numerical results and compare them with analytical solutions in limiting cases of adiabatically slow rocking and of rigid coupling.  相似文献   

7.
In this work, we show thatin any finite system, the binary friction tensor for two Brownian particlescannot be directly estimated from an evaluation of the microscopic Green-Kubo formula, involving the time integral of force-force autocorrelation functions. This pitfall is associated with a subtle inversion of the thermodynamic and long-time limits and leads to spurious results for the estimates of the friction matrix based on molecular dynamics simulations. Starting from a careful analysis of the coupled Langevin equations for two interacting Brownian particles, we derive a method to circumvent these effects and extract the binary friction tensor from the correlation function matrix of the instantaneous forces exerted by the bath particles on the fixed Brownian particles, and from the relaxation of the total momentum of the bath in afinite system. The general methodology is applied to the case of two hard or soft Brownian spheres in a bath of light particles. Numerical estimates of the relevant correlation functions and of the resulting self and mutual components of the matrix of friction tensors are obtained by molecular dynamics simulations for various spacings between the Brownian particles. This paper is dedicated to B. Jancovici on the occassion of his 65th birthday.  相似文献   

8.
Melting of two-dimensional (2D) clusters of classical particles is studied using Brownian dynamics and Langevin molecular dynamics simulations. The particles are confined either by a circular hard wall or by a parabolic external potential and interact through a dipole or a screened Coulomb potential. We found that, with decreasing strength of the interparticle interaction, clusters with a short-range interparticle interaction and confined by a hard wall exhibit a reentrant behavior in its orientational order.  相似文献   

9.
The main result of this paper is a derivation of a generalized nonlinear Langevin equation (GLE) forn interacting particles in a bath. A consequence of the derivation is that the exact form of the (generalized) fluctuation-dissipation theorem is obtained. We discuss also the relation between the memory kernel of the GLE and some corresponding correlation functions which can be easily obtained in a molecular dynamics computer experiment. In the same spirit it is shown that the approach applies to a Brownian particle subjected to a stationary external field. The technique presented in a previous paper to simulate generalized Brownian dynamics can be easily extended to the present case. Our derivation intends to clarify the uses and (possibly) abuses of the Langevin equation in Brownian dynamics studies.  相似文献   

10.
11.
The dynamic properties of nanoparticles suspended in a supercooled glass forming liquid are studied by x-ray photon correlation spectroscopy. While at high temperatures the particles undergo Brownian motion the measurements closer to the glass transition indicate hyperdiffusive behavior. In this state the dynamics is independent of the local structural arrangement of nanoparticles, suggesting a cooperative behavior governed by the near-vitreous solvent.  相似文献   

12.
It is shown that a suspension of insulating particles in a liquid with low conductivity possesses bistability and has a "negative" effective viscosity effect in the electric field due to internal rotations. By Brownian dynamics simulation it has been found that thermal fluctuations of the angular velocity of particles in this bistable system can have a large effect on the viscosity of the suspension.  相似文献   

13.
Brownian motion of the particles with repulsive interaction is investigated. When the potential condition is satisfied, the eigenvalue problem of interaction Fokker-Planck equation under certain conditions can be transformed to that of a many-particle Schrödinger equation. Using the Green's function method, we obtain the effective single-variable Fokker-Planck equation in the low density limit. We find that the diffusion of coupled Brownian particles in quenched disorder media is also anomalous in 2D. The Mittag-Leffler relaxation of pancake vortices is investigated by fractional Fokker-Planck equation.  相似文献   

14.
Space-variant dynamics of Brownian particles near an air-liquid interface is investigated by a one-shot analysis technique based on spectral-domain low-coherence dynamic light scattering. The expression “one shot” refers to the simultaneous and seamless measurement of temporal autocorrelation functions of the time-varying intensity depending on the scattering position without any scanning operation. It is experimentally confirmed that the Brownian motion is suppressed in a region close to an air-liquid interface, is activated by increasing the distance from the interface, and becomes freely diffusive far from the interface. This work is considered to be the first experimental confirmation of space-variant Brownian dynamics in the vicinity of an air-liquid interface.  相似文献   

15.
In this paper, diffusion behavior of Brownian particles moving in a 1D periodic potential landscape has been theoretically investigated by using the general quantum Langevin equation. At first, in the condition of weak disorder, some anomalous diffusive behaviors have been revealed in the process. Then, two types of mean square displacement, ensemble averaged and time averaged mean square displacement, have been investigated in a long time, and the weak ergodicity breaking phenomenon has been revealed. It is shown that the general quantum Langevin equation can exhibit some novel details of the experimental diffusion process.  相似文献   

16.
We use the system-plus-reservoir approach to study the dynamics of a system composed of two independent Brownian particles. We present an extension of the well-known model of a bath of oscillators which is capable of inducing an effective coupling between the two particles depending on the choice made for the spectral function of the bath oscillators. The coupling is nonlinear in the variables of interest, and an exponential dependence on these variables is imposed in order to guarantee the translational invariance of the model if the two particles are not subject to any external potential. The effective equations of motion for the particles are obtained by the Laplace transform method, and, besides recovering all the local dynamical properties for each particle, we end up with an effective interaction potential between them. We explicitly analyze one of its possible forms.  相似文献   

17.
We study collective escape phenomena in nonlinear chain models. First we investigate the fragmentation of an overdamped polymer chain due to thermal fluctuations in the absence of an external force. We calculate the activation times of individual bonds in the coupled chain system and compare them with times obtained from Brownian dynamics simulations. We also consider a grafted chain exposed to an external force which monotonically grows as time goes on. In underdamped situations we show that collective localized excitations in a nonlinear force field with absorbing states can cause polymer fragmentation. In a similar fashion, localized modes assist a thermally activated escape of interacting particles in a metastable potential landscape which is additionally subjected to a periodic driving. The latter is necessary to obtain overcritical elongations which create localized modes even in case of stronger damping.  相似文献   

18.
We have investigated the behaviour of a suspension of magnetic rod-like hematite particles in a simple shear flow with the addition of an applied magnetic field. A significant feature of the present hematite particle suspension is the fact that the magnetic moment of the hematite particle lies normal to the particle-axis direction. From simulations, we have attempted to clarify the dependence of the negative magneto-rheological effect on the particle aggregation and orientational distribution of particles. The present Brownian dynamics method has a significant advantage in that it takes into account the spin rotational Brownian motion about the particle axis in addition to the ordinary translational and rotational Brownian motion. The net viscosity is decomposed into three components and discussed at a deeper level and in detail: these three viscosity components arise from (1) the torque due to the magnetic particle–field interaction, (2) the torque and (3) the force due to the interaction between particles. It is found that a slight change in the orientational distribution has a significant influence on the negative magneto-rheological effect. In a relatively dense suspension, the viscosity components arising from an applied magnetic field and the interaction between particles come to change rapidly for a certain strength of the magnetic particle–particle interaction, which is due to the onset of the formation of raft-like clusters.  相似文献   

19.
Nonconducting particles suspended in a liquid usually decreases the bulk conductivity since they form obstacles to the ions' migration. However, for sufficiently high dc electric fields, these particles rotate spontaneously (Quincke rotation) and facilitate the ions migration: the effective conductivity of the suspension is thus increased. We present a theoretical analysis and show experimental results which demonstrate that the apparent conductivity of the whole suspension can be higher than that of the suspending liquid.  相似文献   

20.
The diffusion dynamics of particles in heterogeneous media is studied using particle-based simulation techniques. A special focus is placed on systems where the transport of particles at long times exhibits anomalies such as subdiffusive or superdiffusive behavior. First, a two-dimensional model system is considered containing gas particles (tracers) that diffuse through a random arrangement of pinned, disk-shaped particles. This system is similar to a classical Lorentz gas. However, different from the original Lorentz model, soft instead of hard interactions are considered and we also discuss the case where the tracer particles interact with each other. We show that the modification from hard to soft interactions strongly affects anomalous-diffusive transport at high obstacle densities. Second, non-linear active micro-rheology in a glass-forming binary Yukawa mixture is investigated, pulling single particles through a deeply supercooled state by applying a constant force. Here, we observe superdiffusion in force direction and analyze its origin. Finally, we consider the Brownian dynamics of a particle which is pulled through a two-dimensional random force field. We discuss the similarities of this model with the Lorentz gas as well as active micro-rheology in glass-forming systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号