首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Impurity states in ZnSe/InP/ZnS core/shell/shell spherical quantum dot where electrons are localized in the InP shell are considered using variational method. It is assumed that the hydrogenlike impurity is located in the center of quantum dot core (ZnSe). The impurity ground state wave function and energy, as well as electron binding energy are obtained. Interband direct transitions from the ground valence state into the ground donor state are considered. Dependences of absorption edge on the inner and outer radii of the quantum layer are derived.  相似文献   

2.
Intra-subband transitions caused by light absorption in a parabolic quantum well is considered taking into account the scattering by ionized impurity centers. To calculate the scattering matrix element, the Born approximation is used and the interaction with the impurity is described by the Coulomb potential. An analytical expression for the absorption coefficient of processes with the initial absorption of photon and further scattering by an ionized impurity center is obtained. For absorption coefficient the frequency characteristics and dependence on the width of quantum well are examined.  相似文献   

3.
The impurity states in a narrow-gap semiconductor parabolic quantum dot in the presence of external extremely strong magnetic field are considered in adiabatic approximation framework. Moreover, the dispersion law for impurity electron is described by using the Kane's two-band approximation. The effective one-dimensional equation describing the impurity electron's state along the field is obtained. The analytical expressions for total and binding energies of impurity ground state are obtained. The dependences of total and binding energies of impurity on the value of magnetic field and on the size of quantum dot are investigated.  相似文献   

4.
氮化物抛物量子阱中类氢杂质态能量   总被引:6,自引:1,他引:5  
采用变分方法研究氮化物抛物量子阱(GaN/AlxGa1-xN)材料中类氢杂质态的能级,给出基态能量、第一激发态能量、结合能和跃迁能量等物理量随抛物量子阱宽度变化的函数关系.研究结果表明,基态能量、第一激发态能量、基态结合能和1s→2p±跃迁能量随着阱宽L的增大而减小,最后接近于GaN中3D值.GaN/Al0.3Ga0.7N抛物量子阱对杂质态的束缚程度比GaAs/Al0.3Ga0.7As抛物量子阱强,因此,在GaN/Al0.3-Ga0.7N抛物量子阱中束缚于杂质中心处的电子比在GaAs/Al0.3Ga0.7As抛物量子阱中束缚于杂质中心处的电子稳定.  相似文献   

5.
We have studied the behavior of the binding energy and photoionization cross-section of a donor-impurity in cylindrical-shape GaAs-Ga0.7Al0.3As quantum dots, under the effects of hydrostatic pressure and in-growth direction applied electric and magnetic fields. We have used the variational method under the effective mass and parabolic band approximations. Parallel and perpendicular polarizations of the incident radiation and several values of the quantum dot geometry have also been considered. Our results show that the photoionization cross-section growths as the hydrostatic pressure is increased. For parallel polarization of the incident radiation, the photoionization cross-section decreases when the impurity is shifted from the center of the dot. In the case of perpendicular polarization of the incident radiation, the photoionization cross-section increases when the impurity is shifted in the radial direction of the dot. For on-axis impurities the transitions between the ground state of the impurity and the ground state of the quantum dot are forbidden. In the low pressure regime (less than 13.5 kbar) the impurity binding energy growths linearly with pressure, and in the high pressure regime (higher than 13.5 kbar) the binding energy growths up to a maximum and then decreases. Additionally, we have found that the applied electric and magnetic fields may favor the increase or decrease in binding energy, depending on the impurity position.  相似文献   

6.
The impurity absorption of light in a quantum dot with a parabolic potential profile is considered within the framework of the model of a zero radius potential in the effective mass approximation. The sensitivity of the effect of position disorder to the size factor at the transition from a quantum well to a quantum dot is revealed. The spectral dependence of the coefficient of impurity absorption of light is investigated with account of the spread in size of quantum dots. It is shown that the account of spread in size results in smearing of discrete absorption lines. The impurity absorption edge depends on the parameters of quantum dots and the depth of the impurity level.  相似文献   

7.
A three-electron quantum dot under an external magnetic field was studied. A number of phase diagrams have been obtained to demonstrate how the variation of the magnetic field and/or the parameters of confinement would lead to the occurrence of doublet–quadruplet transitions. Both the confinement with parabolic potential and the square well potential have been considered. We show that the parameters of confinement alter the ground state of the quantum dot from a spin doublet to a spin quadruplet. This result indicates that the quantum dot can be used as a good candidate for qubit of a quantum computer.  相似文献   

8.
The shallow hydrogenic donor impurity states in square, V-shaped, and parabolic quantum wells are studied in the framework of effective-mass envelope-function theory using the plane wave basis. The first four impurity energy levels and binding energy of the ground state are more easily calculated than with the variation method. The calculation results indicate that impurity energy levels decrease withthe increase of the well width and decrease quickly when the well width is small.The binding energy of the ground state increases until it reaches a maximum value,and then decreases as the well width increases. The results are meaningful andcan be widely applied in the design of various optoelectronic devices.  相似文献   

9.
An adiabatic method is presented for solving a boundary discrete spectrum problem for a parabolic quantum well and a rectangular quantum well with infinitely-high walls in the presence of a hydrogen-like impurity. The upper and lower bounds for the energy of the ground state of the systems are obtained under the conditions of the shift of the Coulomb center in a given range of the parameter with respect to earlier variational estimates. The comparison of the rate of convergence of the adiabatic expansion of the solution in parametric bases in the cylindrical and spherical coordinates is carried out.  相似文献   

10.
The effect of longitudinal optical phonon field on the ground state and low lying-excited state energies of a hydrogenic impurity in a Zn1−xCdxSe/ZnSe strained quantum dot is investigated for various Cd content using the Aldrich-Bajaj effective potential. We consider the strain effect considering the internal electric field induced by the spontaneous and piezoelectric polarizations. Calculations have been performed using Bessel function as an orthonormal basis for different confinement potentials of barrier height. Polaron induced photoionization cross section of the hydrogenic impurity in the quantum dot is investigated. We study the oscillator strengths, the linear and third-order nonlinear optical absorption coefficients as a function of incident photon energy for 1s-1p and 1p-1d transitions with and without the polaronic effect. It is observed that the potential taking into account the effects of phonon makes the binding energies more than the obtained results using a Coulomb potential screened by a static dielectric constant and the optical properties of hydrogenic impurity in a quantum dot are strongly affected by the confining potential and the radii. It is also observed that the magnitude of the absorption coefficients increases for the transitions between higher levels with the inclusion of phonon effect.  相似文献   

11.
The interimpurity optical absorption in a parabolic quantum well is studied theoretically. Under the assumption of a lightly doped semiconductor, the probabilities of acceptor-to-donor transitions are determined and the corresponding coefficient of light absorption is calculated. Within the framework of the nearest neighbor model, the broadening of impurity levels connected with the spatial distribution of donor-acceptor pairs is taken into account. The dependence of the absorption coefficient on the impurity concentration is determined and the blueshift in the absorption spectrum is studied.  相似文献   

12.
The binding energy and wavefunctions of the 1s, 1p, 1d and 1f energy states of a spherical quantum dot (QD) with parabolic potential were calculated by using a method which is a combination of the quantum genetic algorithm (QGA) and the Hartree–Fock–Roothaan (HFR) approach. In addition, the linear and the third-order nonlinear optical absorption coefficients based on optical transitions in QDs with and without impurity were calculated. The results show that the parabolic potential has a great effect not only on the binding energies and but also on the optical absorption coefficients. Moreover, the calculated results also reveal that the linear and nonlinear optical absorption coefficients are strongly affected by the existence of impurity and the incident optical intensity.  相似文献   

13.
We have calculated variationally the ground state binding energy of a hydrogenic donor impurity in a parabolic quantum well in the presence of crossed electric and magnetic fields. These homogeneous crossed fields are such that the magnetic field is parallel to the heterostructure layers and the electric field is applied perpendicular to the magnetic field. The dependence of the donor impurity binding energy to the well width and the strength of the electric and magnetic fields are discussed. We hope that the obtained results will provide important improvements in device applications, especially for a suitable choice of both fields in the narrow well widths.  相似文献   

14.
陈时华  肖景林 《发光学报》2007,28(3):331-335
采用Pekar类型的变分方法研究了抛物量子点中强耦合束缚磁极化子的基态和激发态的性质.计算了束缚磁极化子的基态和激发态的能量、光学声子平均数以及束缚磁极化子的共振频率.讨论了这些量对回旋频率和有效束缚强度以及库仑束缚势的依赖关系.数值计算结果表明:量子点中强耦合束缚磁极化子的基态能量和共振频率以及光学声子平均数均随量子点的有效束缚强度的增加而减小,基态能量随库仑束缚势的增加而减小,随回旋频率的增加而增大.  相似文献   

15.
The effects of external electric and magnetic fields on the ground state binding energy of hydrogenic donor impurity are compared in square, V-shaped, and parabolic quantum wells. With the effective-mass envelope-function approximation theory, the ground state binding energies of hydrogenic donor impurity in InGaAsP/InP QWs are calculated through the plane wave basis method. The results indicate that as the quantum well width increases, the binding energy changes most fast in SQW. When the well width is fixed, the binding energy is the largest in VQW for the donor impurity located near the center of QWs. For the smaller and larger well width, the electric field effect on binding energy is the most significant in VQW and SQW, respectively. The magnetic field effect on binding energy is the most significant in VQW. The combined effects of electric and magnetic fields on the binding energy of hydrogenic donor impurity are qualitative consistent in different shaped QWs.  相似文献   

16.
Two interacting electrons in a Gaussian confining potential quantum dot are considered under the influence of a perpendicular homogeneous magnetic field. The energy levels of the low-lying states are calculated as a function of magnetic field. Calculations are made by using the method of few-body physics within the effective-mass approximation. A ground state behavior (singlet→triplet state transitions) as a function of the strength of a magnetic field has been found in the weak confinement case as a two-electron quantum dot with parabolic confining potential.  相似文献   

17.
18.
A quantum model of the Thomson helium atom is considered within the framework of stationary perturbation theory. It is shown that from a formal point of view this problem is similar to that of two-electron states in a parabolic quantum dot. The ground state energy of the quantum Thomson helium atom is estimated on the basis of Heisenberg’s uncertainty principle. The ground state energies obtained in the first order of perturbation theory and qualitative estimate provide, respectively, upper and lower estimates of eigenvalues derived by numerically solving the problem for a quantum model. The conditions under which the Kohn theorem holds in this system, when the values of resonance absorption frequencies are independent of the Coulomb interaction between electrons, are discussed.  相似文献   

19.
In this work, we directly calculate the ground state energies for an electron in quantum well wires (QWWs) with different shapes in the presence of applied electric and magnetic fields using the finite difference method. Then, we study the ground state binding energy of a hydrogenic impurity with a variational approach. We obtain the binding energy for QWWs consisting of the combinations of square and parabolic well potential. Our results indicate that the impurity binding energy depends strongly on the structural confinement and also, on the applied electric and magnetic field.  相似文献   

20.
The light absorption by the quantum point - impurity center complex in an external quantizing magnetic field is studied in the effective mass approximation for the model of zero-radius potential. An expression for the absorption coefficient of light having longitudinal polarization by an impurity is derived when the influence of the magnetic field on the ground state of the impurity at the quantum point can be neglected. It is demonstrated that the edge of the absorption band of the impurity is shifted toward shorter wavelengths with increasing magnetic field strength. In this case, the absorption coefficient increases several times, which is interpreted as the effect of magnetic freezing-in of the ground state of the quantum point.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号