首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
The ubiquitin-binding, three-helix bundle domains of the proteins ubiquilin 1 (UQ1) and hHR23A both exhibited remarkably high, but discrete, ammonium ion adduction when electrosprayed from aqueous ammonium acetate. The degree of adduction was highly charge state dependent with, unusually, the lowest charge states (+3 for UQ1 and +4 for hHR23A) showing almost no adducts and the highest charge states (+5 for UQ1 and +6 for hHR23A) exhibiting adduction with two ammonium cations as the most abundant form. As the charge state of protein ions produced by electrospray ionisation (ESI) is related to solvent-accessible surface area we inferred that the ammonium-carrying ions were of a more open conformation than their protonated counterparts. This was confirmed by ESI-travelling wave ion mobility spectrometry-mass spectrometry (TWIMS-MS), which showed that, although the purely protonated ions were compact, their equivalents bearing one or two ammonium adducts exhibited populations of significantly larger collisional cross section (CCS). We postulate that complexation with the ammonium cation may disrupt a key salt bridge(s) in the compact structure. A similar effect is observed with mono-sodium ion adduction, but this is diminished with each additional sodium ion in the complex to produce more compact structures.  相似文献   

2.
The design and total chemical synthesis of a monomeric native-like four-helix bundle protein is presented. The designed protein, GTD-Lig, consists of 90 amino acids and is based on the dimeric structure of the de novo designed helix-loop-helix GTD-43. GTD-Lig was prepared by the native chemical ligation strategy and the fragments (45 residues long) were synthesized by applying standard fluorenylmethoxycarbonyl (Fmoc) chemistry. The required peptide-thioester fragment was prepared by anchoring the free gamma-carboxy group of Fmoc-Glu-allyl to the solid phase. After chain elongation the allyl moiety was orthogonally removed and the resulting carboxy group was functionalized with a glycine-thioester followed by standard trifluoroacetic acid (TFA) cleavage to produce the unprotected peptide-thioester. The structure of the synthetic protein was examined by far- and near-UV circular dichroism (CD), sedimentation equilibrium ultracentrifugation, and NMR and fluorescence spectroscopy. The spectroscopic methods show a highly helical and native-like monomeric protein consistent with the design. Heat-induced unfolding was studied by tryptophan absorbance and far-UV CD. The thermal unfolding of GTD-Lig occurs in two steps; a cooperative transition from the native state to an intermediate state and thereafter by noncooperative melting to the unfolded state. The intermediate exhibits the properties of a molten globule such as a retained native secondary structure and a compact hydrophobic core. The thermodynamics of GuHCl-induced unfolding were evaluated by far-UV CD monitoring and the unfolding exhibited a cooperative transition that is well-fitted by a two-state mechanism from the native to the unfolded state. GTD-Lig clearly shows the characteristics of a native protein with a well-defined structure and typical unfolding transitions. The design and synthesis presented herein is of general applicability for the construction of large monomeric proteins.  相似文献   

3.
4.
Tam JP  Yu Q 《Organic letters》2002,4(23):4167-4170
We have designed a facile ligation approach to prepare three-helix bundles mimicking the HIV membrane fusion-state proteins that may be useful as inhibitors and vaccine candidates for blocking HIV infection. [reaction: see text]  相似文献   

5.
Protein fibril formation is implicated in many diseases, and therefore much effort has been focused toward the development of inhibitors of this process. In a previous project, a monomeric protein was computationally engineered to bind itself and form a heterodimer complex following interfacial redesign. One of the protein monomers, termed monomer-B, was unintentionally destabilized and shown to form macroscopic fibrils. Interestingly, in the presence of the designed binding partner, fibril formation was blocked. Here we describe the complete characterization of the amyloid properties of monomer-B and the inhibition of fiber formation by the designed binding partner, monomer-A. Both proteins are mutants of the betal domain of streptococcal protein-G. The free monomer-B protein forms amyloid-type fibrils, as determined by transmission electron microscopy and the change in fluorescence of Thioflavin T, an amyloid-specific dye. Fibril formation kinetics are influenced by pH, protein concentration, and seeding with preformed fibrils. Under all conditions tested, monomer-A was able to inhibit the formation of monomer-B fibrils. This inhibition is specific to the engineered interaction, as incubation of monomer-B with wild-type protein-G (a structural homologue) did not result in inhibition under the same conditions. Thus, this de novo-designed heterodimeric complex is an excellent model system for the study of protein-based fibril formation and inhibition. This system provides additional insight into the development of pharmaceuticals for amyloid disorders, as well as the potential use of amyloid fibrils for self-assembling nanostructures.  相似文献   

6.
Branched oligonucleotides with "CG zippers" as DNA arms assemble into materials from micromolar solutions. Their synthesis has been complicated by low yields in solid-phase syntheses. Here we present a solution-phase synthesis based on phosphoramidites of dimers and phenolic cores that produces six-arm or four-arm hybrids in up to 61% yield. On the level of hybrids, only the final product has to be purified by precipitation or chromatography. A total of five different hybrids were prepared via the solution-phase route, including new hybrid (TCG)(4)TTPA with a tetrakis(triazolylphenyl)adamantane core and trimer DNA arms. The new method is more readily scaled up than solid-phase syntheses, uses no more than 4 equiv of phosphoramidite per phenolic alcohol, and provides routine access to novel materials that assemble via predictable base-pairing interactions.  相似文献   

7.
The FK506-FKBP12 binding-domain of the kinase FRAP (FRB) forms a classic up-down four-helical bundle. The folding pathway of this protein has been investigated using a combination of equilibrium and kinetic studies. The native state of the protein is stable with respect to the unfolded state by some 7 kcal mol(-1) at pH 6.0, 10 degrees C. A kinetic analysis of unfolding and refolding rate constants as a function of chemical denaturant concentration suggests that an intermediate state may be populated during folding at low concentrations of denaturant. The presence of this intermediate state is confirmed by refolding experiments performed in the presence of the hydrophobic dye 8-anilinonaphthalene-1 sulfonate (ANS). ANS binds to the partially folded intermediate state populated during the folding of FRB and undergoes a large change in fluorescence that can be detected using stopped-flow techniques. Analysis of the kinetic data suggests that the intermediate state is compact and it may even be a misfolded species that has to partially unfold before it can reach the transition state. Folding and unfolding rate constants in water are approximately 150-200 s(-1) and 0.005-0.06 s(-1), respectively, at neutral pH and 10 degrees C. The folding of FRB is somewhat slower than for other all-helical proteins, probably as a consequence of the formation of a metastable intermediate state. The folding rate constant in the absence of any populated intermediate can be estimated to be 8800 s(-1). Despite the presence of an intermediate state, which effectively slows folding, the protein still folds rapidly with a half-life of 5 ms at 10 degrees C. The dependence of the rate constants on denaturant concentration indicates that the transition state for folding is compact with some 80% of the surface area exposed in the unfolded state buried in the transition state. Data presented for FRB is compared with kinetic data obtained for other all-helical proteins.  相似文献   

8.
Both symmetric and asymmetric forms of the iodide acetonitrile dimer complex are known to exist with a higher stability shown by the symmetric isomer. Dynamics of this isomerization has been investigated on reduced dimensional surface in absence/presence of external electromagnetic field using Gaussian wave packet as the starting wave function. When the symmetric isomer has been taken as the initial structure, isomerization does not takes place without the external field due to high energy barrier, whereas with the asymmetric isomer as the starting one, isomerization takes place spontaneously with an equal population of both isomers. Our target in this study has been to get a dominant population of asymmetric isomer which is not possible without the application of electromagnetic field. However, it has also been seen that a simple monochromatic field cannot achieve this goal. Only by application of optimally designed polychromatic field the dominating population of asymmetric isomer can be obtained.  相似文献   

9.
10.
Photosynthetic organisms utilize interacting pairs of chlorophylls and bacteriochlorophylls as excitation energy donors and acceptors in light harvesting complexes, as photosensitizers of charge separation in reaction centers, and maybe as photoprotective quenching centers that dissipate excess excitation energy under high light intensities. To better understand how the pigment's local environment and spatial organization within the protein tune its ground- and excited-state properties to perform different functions, we prepared and characterized the simplest possible system of interacting bacteriochlorophylls within a protein scaffold. Using HP7, a high-affinity heme-binding protein of the HP class of de novo designed four-helix bundles, we incorporated 13(2)-OH-zinc-bacteriochlorophyllide-a (ZnBChlide), a water-soluble bacteriochlorophyll derivative, into specific binding sites within the four-helix bundle protein core. We capitalized on the rich and informative optical spectrum of ZnBChlide to rigorously characterize its complexes with HP7 and two variants, in which a single heme-binding site is eliminated by replacing histidine residues at positions 7 or 42 by phenylalanine. Surprisingly, we found the ZnBChlide binding capacity of HP7 and its variants to be higher than for heme: up to three ZnBChlide pigments bind per HP7, or two per each single histidine variant. The formation of dimers within HP7 results in dramatic quenching of ZnBChlide fluorescence, reducing its quantum yield by about 80%, and the singlet excited-state lifetime by 2 orders of magnitudes compared to the monomer. Thus, HP7 and its variants are the first examples of a simple protein environment that can isolate a self-quenching pair of photosynthetic pigments in pure form. Unlike its complicated natural analogues, this system can be constructed from the ground up, starting with the simplest functional element, increasing the complexity as needed.  相似文献   

11.
De novo design and total chemical synthesis of proteins provide powerful approaches to critically test our understanding of protein folding, structure, and stability. The 4-alpha-helix bundle is a frequently studied structure in which four amphiphilic alpha-helical peptide strands form a hydrophobic core. Assembly of protein models on a template has been suggested as a way to reduce the entropy of folding. We have previously developed the concept of carbohydrates as templates in the de novo design of protein models termed 'carboproteins'. Here we present the chemical synthesis of three 8.1 kDa 4-alpha-helix bundles by oxime ligation of tetra-aminooxyacetyl functionalized D-galacto-, D-gluco-, and D-altropyranoside templates with an amphiphilic C-terminal hexadecapeptide aldehyde sequence. CD spectroscopy indicated that the choice of template has an effect on the overall structure of the carboprotein, as the altro-based carboprotein was found to be more alpha-helical than the corresponding galacto- and gluco-carboproteins. However, an influence on stability could not be detected in the present experiments, as the three carboproteins gave similar free energy of foldings (deltaG(F)H2O) and melting points in chemical and thermal denaturation experiments.  相似文献   

12.
The prototype of an artificial molecular machine consisting of a trisammonium tricationic component interlocked with a tris(crown ether) component to form a molecular bundle with averaged C(3v) symmetry has been designed and synthesized. The system is based on noncovalent interactions, which include 1) N(+)-H...O hydrogen bonds; 2) C-H...O interactions between the CH(2)NH(2) (+)CH(2) protons on three dibenzylammonium-ion-containing arms, which are attached symmetrically to a benzenoid core, and three dibenzo[24]crown-8 macrorings fused onto a triphenylene core; and 3) pi...pi stacking interactions between the aromatic cores. The template-directed synthesis of the mechanically interlocked, triply threaded bundle involves post-assembly covalent modification, that is, the efficient conversion of three azide functions at the ends of the arms of the bound and threaded trication into bulky triazole stoppers, after 1,3-dipolar cycloaddition with di-tert-butylacetylenedicarboxylate to the extremely strong 1:1 adduct that is formed in dichloromethane/acetonitrile (3:2), on account of a cluster effect associated with the paucivalent adduct. Evidence for the averaged C(3v) symmetry of the molecular bundle comes from absorption and luminescence data, as well as from electrochemical experiments, (1)H NMR spectroscopy, and mass spectrometry. The photophysical properties of the mechanically interlocked bundle are very similar to those of the superbundle that precedes the formation of the bundle in the process of supramolecular assistance to covalent synthesis. Although weak non-nucleophilic bases (e.g., nBu(3)N and iPr(2)NEt) fail to deprotonate the bundle, the strong tBuOK does, as indicated by both luminescence and (1)H NMR spectroscopy. While deprotonation undoubtedly loosens up the interlocked structure of the molecular bundle by replacing relatively strong N(+)-H...O hydrogen bonds by much weaker N-H...O ones, the pi...pi stacking interactions ensure that any structural changes are inconsequential, particularly when the temperature of the solution of the neutral molecular bundle in dichloromethane is cooled down to considerably below room temperature.  相似文献   

13.
Self-assembled monolayers of biomolecules on atomically planar surfaces offer the prospect of complex combinations of controlled properties, e.g., for bioelectronics. We have prepared a novel hemi-4-alpha-helix bundle protein by attaching two alpha-helical peptides to a cyclo-dithiothreitol (cyclo-DTT) template. The protein was de novo designed to self-assemble in solution to form a 4-alpha-helix bundle, whereas the disulfide moiety enables the formation of a self-assembled monolayer on a Au(111) surface by opening of the disulfide, thus giving rise to a two-step self-assembly process. The 2 x 2-alpha-helix bundle protein and its template were studied by X-ray photo electron spectroscopy (XPS), electrochemical methods, and electrochemical in situ scanning tunneling microscopy (in situ STM). XPS showed that the cyclo-DTT opens on adsorption to a gold surface with the integrity of the 2 x 2-alpha-helix bundle proteins retained. The surface properties of the DTT and 2 x 2-alpha-helix bundle protein adlayer were characterized by interfacial capacitance and impedance techniques. Reductive desorption was used to determine the coverage of the adlayers, giving values of 65 and 16 muC cm(-2) for DTT and 2 x 2-helix, respectively. The 2 x 2-alpha-helix bundle protein adlayers were imaged by in situ STM. The images indicated a dense monolayer according with the voltammetric data. No long-range order could be detected, but two clearly distinct STM contrasts were assigned to 2 x 2-alpha-helix bundle protein molecules oriented in parallel and antiparallel conformations. The template molecule DTT alone forms highly ordered 30-40 nm domains, giving an adlayer density which agreed well with the coverage determined by voltammetry. This could be exploited in STM imaging of mixed DTT/2 x 2-alpha-helix bundle protein monolayers, with clearly distinct STM patterns of the two components.  相似文献   

14.
2,4,5-Triphenylimidazole (lophine) is known as the first chemiluminescence substrate, and its oxidized derivative, the 2,4,5-triphenylimidazolyl radical, corresponds to the coloured species in the photochromic reaction of hexaarylbiimidazole (HABI). We report the first direct observation of the O(2) adduct of the imidazolyl radical that forms the end-on peroxide-bridged imidazole dimer. The ring-opening reaction of the peroxide-bridged imidazole dimer leading to the formation of an N-benzoylbenzamidine derivative supports the presence of the 4,5-epidioxide of lophine as a reaction intermediate of its chemiluminescence.  相似文献   

15.
Many naturally occurring biomaterials are composed of laminated structures in which layers of beta-sheet proteins alternate with layers of inorganic mineral. These ordered laminates often have structural and mechanical properties that differ significantly from those of nonbiological materials. An important step in the construction of novel biomaterials is the creation of composites wherein a de novo designed protein assembles into an ordered structure. To achieve this goal, we layered a de novo protein onto the surface of highly ordered pyrolytic graphite (HOPG). The protein was derived from a combinatorial library of novel sequences designed to fold into amphiphilic beta-sheet structures. Atomic force microscopy reveals that the protein assembles on the HOPG surface into ordered fibers aligned in three orientations at 120 degrees to each other. The symmetry and extent of the ordered regions indicate that the hexagonal lattice underlying the graphite surface templates assembly of millions of protein molecules into a highly ordered structure.  相似文献   

16.
《Mendeleev Communications》2020,30(2):162-164
  1. Download : Download high-res image (121KB)
  2. Download : Download full-size image
  相似文献   

17.
The long-range correction (LC) scheme of density-functional theory (DFT) was applied to the calculation of the pi-aromatic interaction of the benzene dimer and naphthalene dimer. In previous calculations, it was confirmed that the LC scheme [Iikura et al., J. Chem. Phys. 115, 3540 (2001)] gives very accurate potential- energy surfaces (PESs) of small van der Waals (vdW) complexes by combining with the Anderson-Langreth-Lundqvist (ALL) vdW correlation functional [Andersson et al., Phys. Rev. Lett. 76, 102 (1996)] (LC-DFT + ALL). In this study, LC-DFT+ALL method was examined by calculating a wide range of PES of the benzene dimer including parallel, T-shaped, and parallel-displaced configurations. As a result, we succeeded in reproducing very accurate PES within the energy deviance of less than 1 kcalmol in comparison with the results of high-level ab initio molecular-orbital methods at all reference points on the PES. It was also found that LC-DFT + ALL gave accurate results independent of exchange-correlation functional used, in contrast with the strong functional dependencies of conventional pure functionals. This indicates that both exchange repulsion and van der Waals attractive interactions should be correctly incorporated in conventional pure functionals in order to calculate accurate pi-aromatic interactions. We also found that LC-DFT + ALL method has a low basis-set dependency in the calculations of pi-aromatic interactions. The present scheme was also successfully applied to the pi,[ellipsis (horizontal)],pi stacking interactions of naphthalene dimer. This may suggest that LC-DFT + ALL method would be a powerful tool in the calculations of large molecules such as biomolecules.  相似文献   

18.
Combinatorial protein libraries provide a promising route to investigate the determinants and features of protein folding and to identify novel folding amino acid sequences. A library of sequences based on a pool of different monomer types are screened for folding molecules, consistent with a particular foldability criterion. The number of sequences grows exponentially with the length of the polymer, making both experimental and computational tabulations of sequences infeasible. Herein a statistical theory is extended to specify the properties of sequences having particular values of global energetic quantities that specify their energy landscape. The theory yields the site-specific monomer probabilities. A foldability criterion is derived that characterizes the properties of sequences by quantifying the energetic separation of the target state from low-energy states in the unfolded ensemble and the fluctuations of the energies in the unfolded state ensemble. For a simple lattice model of proteins, excellent agreement is observed between the theory and the results of exact enumeration. The theory may be used to provide a quantitative framework for the design and interpretation of combinatorial experiments.  相似文献   

19.
A functionalised cyclobis(paraquat-p-phenylene) attached by a rigid linker to a tetrathiafulvalene unit, which is incapable of self-complexation, forms preferentially a [c2]daisy chain which undergoes rapid disassociation and reassociation on the (1)H NMR time-scale above room temperature.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号