首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new analytical method using 1-(2-pyridylazo)-2-naphthol (PAN)-modified SiO2 nanoparticles as solid-phase extractant has been developed for the preconcentration of trace amounts of Sb(III) in different water samples. Conditions of the analysis such as preconcentration factor, effect of pH, sample volume, shaking time, elution conditions, and effects of interfering ions for the recovery of the analyte were investigated. The adsorption capacity of nanometer SiO2-PAN was found to be 186.25 micromol/g at optimum pH and the LOD (3sigma) was 0.60 microg/L. The extractant showed rapid kinetic sorption. The adsorption equilibrium of Sb(III) on nanometer SiO2-PAN was achieved in 10 min. Adsorbed Sb(III) was easily eluted with 4 mL 2 M hydrochloric acid. The maximum preconcentration factor was 62.20. The method was applied for the determination of trace amounts of Sb(III) in various water samples (tap, mineral water, and industrial effluents).  相似文献   

2.
This paper proposes a preconcentration procedure for determination of nickel in saline aqueous waste samples by flame atomic absorption spectrometry (FAAS). It is based on cloud-point extraction of nickel(II) ions as 2-(5-bromo-2-pyridylazo)-5-diethilaminophenol (Br-PADAP) complexes using octylphenoxypolyethoxyethanol (Triton X-114) as surfactant. The optimisation step was performed using a four-variable Doehlert design, involving the factors centrifugation time (CT) of system after addition of surfactant, solution pH, methanol volume (MV) added at micellar phase, and buffer concentration (BC). The analytical response used was absorbance, after volume correction. Using the established experimental conditions in the optimisation step the procedure enables nickel determination with a detection limit (3 delta/ S) of 0.2 microg L(-1), quantification limit (10 delta/ S) of 0.7 microg L(-1), and precision, calculated as relative standard deviation ( RSD) of 4.7 ( n=8) and 3.5% ( n=8) for nickel concentration of 1 and 5 microg L(-1), respectively. The preconcentration factor, determined from the ratio of the slopes of the analytical curves with and without preconcentration, is 74. The recovery achieved for nickel determination in the presence of several cations demonstrated that this procedure could be applied for analysis of water samples. The robustness was checked by using saturated fractional factorial designs, centred on the established experimental conditions in the optimisation step. The results of these tests demonstrated that the variables centrifugation time and buffer concentration are robust for modification by 10% and that solution pH and methanol volume are robust for 5%. Accuracy was evaluated by using the certified material reference SLEW-3 estuarine water for trace metals. The procedure was used for determination of nickel in saline effluents from oil refinery samples. Recovery results (95-104%) indicate that the procedure has satisfactory accuracy for nickel determination in these samples.  相似文献   

3.
Liquid-phase microextraction (LPME) coupled with gas chromatography-flame ionization detection is applied to the analysis of phenolic compounds (phenol, o-cresol, m-cresol, 2,4-dimethylphenol, 2,3- dimethylphenol, and 3,4-dimethylphenol) in water samples. Experimental parameters affecting the extraction efficiency (including extraction solvent and drop volume, stirring rate, extraction time, temperature, salt concentration, and pH) are investigated and optimized. The developed protocol yields a good linear calibration curve from 5 or 20 to 10000 microg/L for the target analytes. The limits of detection are in the range of 0.94 to 1.97 microg/L, and the relative standard deviation is below 9.37%. The established method is applied to determine the phenolic pollutants in real wastewater samples from a coking plant. The recoveries of the phenolic compounds studied are from 92% to 102%, suggesting the feasibility of the LPME method for the determination of the phenolic compounds in wastewater.  相似文献   

4.
A minicolumn packed with poly(aminophosphonic acid) chelating resin incorporated in an on-line preconcentration system for flame atomic-absorption spectrometry was used to determine ultratrace amounts of lead in mussel samples at microg L(-1) level. The preconcentrated lead was eluted with hydrochloric acid and injected directly into the nebulizer for atomization in an air-acetylene flame for measurement. The performance characteristics of the determination of lead were: preconcentration factor 26.8 for 1 min preconcentration time, detection limit (3sigma) in the sample digest was 0.25 microg g(-1) (dry weight) for a sample volume of 3.5 mL and 0.2 g sample (preconcentration time 1 min), precision (RSD) 2.3% for 25 microg L(-1) and 2.0% for 50 microg L(-1). The sampling frequency was 45 h(-1). The method was highly tolerant of interferences, and the results obtained for the determination of lead in a reference material testify to the applicability of the proposed procedure to the determination of lead at ultratrace level in biological materials such as mussel samples.  相似文献   

5.
In the present paper, the sorption properties of caffeine (CAF) onto polyether type polyurethane foam (PUF) as solid phase sorbent were investigated with UV determination at 274.3 nm. Batch and column methods were used to optimize chemical, flow, kinetic and isothermal conditions for preconcentration of CAF. Results indicated quantitative sorption of CAF at pH 8 and 30 min shaking time. The maximum sorption capacity was found to be 4.1 mg g(-1). Column preconcentration was recommended at a flow rate of 1.5 mL min(-1) and desorption with 4 mL from 0.15 mol L(-1) hydrochloric acid. The procedure provided a linear analytical range of 0.05-30 mg L(-1). The detection and quantification limits are 0.016 and 0.047 mg L(-1), respectively. The procedure was applied to determination of CAF in spiked human plasma. The obtained recoveries were 98-101% and RSD values were from 0.05 to 9.5%.  相似文献   

6.
An analytical method was developed for antimony speciation and antimony(III) preconcentration in water samples. The method is based on the selective retention of Sb(III) by modified Saccharomyces cerevisiae in the presence of Sb(V). Heat, caustic and solvent pretreatments of the biomass were investigated to improve the kinetics and thermodynamics of Sb(III) uptake process at room temperature. Heating for 30 min at 80 degrees C was defined as the optimal treatment. Antimony accumulation by the cells was independent of pH (5-10) and ionic strength (0.01-0.1 mol L(-1)). 140 mg of yeast and 2h of contact were necessary to ensure quantitative sequestration of Sb(III) up to 750 microg L(-1). In these conditions, Sb(V) was not retained. Sb(V) was quantified in sorption supernatant by inductively coupled plasma mass spectrometry (ICP-MS) or inductively coupled plasma optical emission spectrometry (ICP-OES). Sb(III) was determined after elution with 40 mmol L(-1) thioglycolic acid at pH 10. A preconcentration factor close to nine was achieved for Sb(III) when 100mL of sample was processed. After preconcentration, the detection limits for Sb(III) and Sb(V) were 2 and 5 ng L(-1), respectively, using ICP-MS, 7 and 0.9 microg L(-1) using ICP-OES. The proposed method was successfully applied to the determination of Sb(III) and Sb(V) in spiked river and mineral water samples. The relative standard deviations (n=3) were in the 2-5% range at the tenth microg L(-1) level and less than 10% at the lowest Sb(III) and Sb(V) tested concentration (0.1 microg L(-1)). Corrected recoveries were in all cases close to 100%.  相似文献   

7.
A very sensitive, simple, and fast solid-phase spectrophotometric procedure for the determination of phenol using the p-nitrobenzenediazonium reagent (DAR reagent) was developed. This procedure is based on the simultaneous concentration of the orange product on a Dowex 1-X2 anion exchanger within 15 min, and a direct absorbance measurement of the sorbed species at both 530 nm (the absorption maximum of the phenol-DAR in the resin phase) and 700 nm (the range where only the resin absorbs light). Quality control and evaluation of the analytical parameters was carried out using a comprehensive prevalidation strategy. The linearity of the method was confirmed within an analyte working range from 0.01 to 0.10 μmol (0.2 to 2.0 nmol mL(-1)). The precision ranged from ±1.17 to ±9.61%; the accuracy ranged from -17.50 to +17.81%. The evaluated limiting values were L(D) = 0.0013 μmol and L(Q) = 0.0082 μmol. The DAR-SPS method was successfully applied to the determination of phenol in a pharmaceutical sample of salicylic acid (98.0-100.0%) and vaccines (98.0-103.4%).  相似文献   

8.
An on-line flow injection preconcentration-ETAAS method is developed for trace determination of cobalt in biological materials and natural samples by ion-pair sorption on the inner walls of a PTFE knotted reactor. The ion-pair is formed between the negatively charged cobalt-nitroso-R-salt complex and the tetrabutylammonium counter-ion. An enhancement factor of 15, a sampling frequency of 17 and a concentration efficiency of 4 are obtained for a preconcentration time of 60 s and a sample loading flow rate of 5 mL min(-1). The detection limit (3sigma) is 5 ng L(-1). The relative standard deviation at the 0.2 microg L(-1) level is 2.3%. The analytical results obtained for standard reference materials are in good agreement with the certified or indicated values and satisfactory recoveries of spiked cobalt in tap water are obtained.  相似文献   

9.
A new simple and reliable method has been developed to separate and preconcentrate trace copper ion in drinking water and tea samples for subsequent measurement by flame atomic absorption spectrometry (FAAS). The copper ions are adsorbed quantitatively during passage of aqueous solutions through Amberlyst 36 cation exchange resin. After the separation and preconcentration stage, the analyte was eluted with a potassium cyanide solution and determined by FAAS. Different factors including pH of sample solution, sample volume, amount of resin, flow rate of aqueous solution, volume and concentration of eluent, and matrix effects for preconcentration were examined. The analytical figures of merit for the determination of copper are as follows: analytical detection limit (3 sigma), 0.26 microg/L; precision (RSD), 3.1% for 100 microg/L; enrichment factor, 200 (using 1000 mL of sample solution and 5 mL of eluent); time of analysis, 3.5 h (for obtaining enrichment factor of 200); capacity of resin, 125 mg/g. The method was applied for copper determination by FAAS in tap water, commercial natural spring water, commercial treated drinking water, and commercial tea bag sample. The accuracy of the method is confirmed by analyzing tea leaves (GBW 07605). The results demonstrated good agreement with the certified values.  相似文献   

10.
A simple method for the determination of mercury in water samples after preconcentration using dispersive liquid-liquid microextraction is described. The procedure is based on the extraction of mercury in the form of a complex and its subsequent determination by spectrophotometry. The complex is formed between Hg(II) and 2-(2-benzothiazolylazo)-p-cresol. The detection at 650 nm is performed directly in the metal-rich phase, which is spread on a triacetylcellulose membrane. The method eliminates the need to use a cuvet or large quantities of samples and reagents. The parameters that influence the preconcentration were studied, and the analytical characteristics were determined. The enrichment factor and the consumptive index for this method were 64 and 0.16 mL, respectively. The LOD (3.3 microg/L) and LOQ (11.1 microg/L) were also determined. The accuracy of the method was tested by the determination of mercury in certified reference materials BCR 397 (Human Hair) and SRM 2781 (Domestic Sludge). The method was applied to the determination of mercury in samples of drinking water, sea water, and river water.  相似文献   

11.
A new reagent, anthraquinone-2-sulfonyl chloride, is used for the derivatizaton of phenols. Several compounds with different polarities are selected to evaluate the new reagent and derivatives of these phenols that are prepared via a facile pathway. The optimal conditions for analytical derivatization and mechanism of the derivatization reaction are discussed. The derivatization procedure involves an ion-pair extraction of the deprotonated phenols with a tetrabutylammonium counter ion in the organic phase. At the interface of two phases, the derivatization reaction occurs quantitatively at room temperature within 3 min. The derivatives are stable and readily amenable to analysis by normal-phase (NP) and reversed-phase (RP) high-performance liquid chromatography (HPLC). Excellent linearity response was demonstrated over the concentration range of 0.2-200 micromol/L at 320 nm for NP-HPLC and at 256 nm for RP-HPLC. Combined with preconcentration using a Waters Sep-Pak Plus C(18) cartridge, detection limits of phenols for water-sample analysis are as low as 1 x 10(-9) mol/L (approximately 0.1 microg/mL).  相似文献   

12.
A 4-vinylpyridine-divinylbenzene (VP-DVB) resin was synthesized to be used for on-line solid-phase extraction process and it was tested for a group of polar compounds. The high specific surface area and the nitrogen content of the VP-DVB sorbent increased the interactions with the polar analytes in the preconcentration process. The sorbent enabled 100 ml of water to be concentrated with recoveries higher than 70% for several polar compounds (including phenol) except for oxamyl (55%) and methomyl (43%). The method was used to analyse water samples by liquid chromatography and UV detection. Linearity was good and detection limits were 0.1-0.2 microg l(-1) for all compounds. Several tap and river water and waste water treatment plant samples were analyzed; phenol and (4-chloro-2-methyl-phenoxy)acetic acid (MCPA) were tentatively determined in some samples.  相似文献   

13.
A new analytical procedure is developed to couple supercritical fluid extraction with capillary electrochromatography (SFE-CEC) to extract and determine phenols in soil. Ten phenols consisting of phenol, methylphenols (p-cresol and o-cresol), dimethylphenols (3,5-xylenol, 3,4-xylenol and 2,6-xylenol), trimethylphenol, ethylphenols (p-ethylphenol and o-ethylphenol), and o-isopropylphenol are investigated. The use of supercritical CO2 with 10% methanol as the organic modifier was found to give satisfactory extraction of alkylphenols from soil at 1200 p.s.i. and 50 degrees C for 45 min under a total extractant flow-rate of 0.2 ml/min (1 p.s.i.=6894.76 Pa). Baseline resolution was achieved for the 10 selected phenols under optimised CEC conditions at 20 kV in a mobile phase of acetonitrile-4 mM Tris, pH 7.0 (35:65) in a 45 cm (25 cm packed with 3 microm ODS) x 75 microm I.D. fused-silica capillary column. Using SFE with a 10-fold preconcentration factor, all alkyl-substituted phenols in soil can be determined with detection limits ranging from 0.0032 to 0.014 mg/kg and working range from 0.019 to 2.72 mg/kg. The SFE-CEC procedure developed has been applied successfully to determine phenols extracted from real soil sample contaminated with medical disinfectant. It will provide a rapid method for the direct determination of phenol and alkyl-substituted phenol in soils, with capability for confirmation of unknown peaks.  相似文献   

14.
A simple reversed-phase LC method capable of detecting ng/ml quantities of phenolic compounds in water is described. Pre-column derivatization with benzoyl chloride is used for the separation and determination o-cresol, m-cresol, p-cresol, phenol, resorcinol, catechol and hydroquinone in water. The benzoyl derivatives formed within in 15 min, were extracted with dietyl ether, and then analyzed by liquid chromatography with UV detection at 232 nm. With a mobile phase of acetonitrile-tetrahydrofuran-water (54:6:40, v/v) the seven derivatives were eluted in 15 min. The detection limits were between 0.05 and 0.50 ng/ml for 50 ml of a standard water sample. The method was applied to the analysis of phenols in wine and river water. The recovery of the derivatives from pure water was 81-94% with relative standard deviations of 2.5-5.0%.  相似文献   

15.
An on-line cadmium preconcentration and determination system implemented with inductively coupled plasma optical emission spectrometry (ICP-OES) associated to flow injection (FI) with ultrasonic nebulization system (USN) was studied. The cadmium was retained as the cadmium-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol, Cd-(5-Br-PADAP), complex, at pH 9.5. The cadmium complex was removed from the knotted reactor (KR) with 3.0 mol/L nitric acid. A total enhancement factor of 216 was obtained with respect to ICP-OES using pneumatic nebulization (12 for USN and 18 for KR) with a preconcentration time of 60 s. The value of the detection limit for the preconcentration of 5 mL of sample solution was 5 ng/L. The precision for 10 replicate determinations at the 5 microg/L Cd level was 2.9% relative standard deviation (RSD), calculated from the peak heights obtained. The calibration graph using the preconcentration system for cadmium was linear with a correlation coefficient of 0.9998 at levels near the detection limits up to at least 1,000 microg/L. The method was successfully applied to the determination of cadmium in wine samples.  相似文献   

16.
Determination of phenols using simultaneous steam distillation-extraction   总被引:2,自引:0,他引:2  
Simultaneous distillation-extraction was proposed as a preconcentration step for the determination of phenol and its derivatives in aqueous and soil samples. Detection limits of 0.01 mg l(-1) (water) and 0.1 mg kg(-1) (soil) were achieved by gas chromatography-flame ionization detection. The described preconcentration procedure was applied for the primary study of the adsorption equilibrium in a water-soil system serving as a model of phenol behaviors in the environment.  相似文献   

17.
An on-line column preconcentration method based on the combined use of ammonium O,O-diethyldithiophosphate and activated carbon or polyurethane foam as adsorbents has been developed for the determination of Pb in water samples. The complexed Pb was eluted with ethanol and determined by flame atomic absorption spectrometry. The optimum preconcentration conditions are given for each adsorbent. The enrichment factors were 63 and 294, and the detection limits (3sigma) 3 microg L(-1) and 0.8 microg L(-1), respectively, for the carbon and foam systems. When the optimized procedures were applied to the determination of Pb in water samples the recovery efficiency was > 96%.  相似文献   

18.
In this work, flame atomic absorption spectrometry (FAAS) was used as a detector for the determination of zinc in natural water samples with a flow-injection system coupled to solid-phase extraction (SPE). In order to promote the on-line preconcentration of zinc from samples a minicolumn packed with 35 mg of a styrene-divinylbenzene resin functionalized with (S)-2-[hydroxy-bis(4-vinylphenyl)methyl]pyrrolidine-1-carboxylic acid ethyl esther was utilized. The system operation was based on Zn(II) ion retention at pH 9.5 +/- 0.5 in such a minicolumn with analyte elution, at the back flush mode, with 1 mol L(-1) HCl directly to the FAAS nebulizer. The influence of the chemical (sample pH, buffer concentration, HCl eluent concentration and effect of the ionic strength) and flow (sample and eluent flow rates and preconcentration time) parameters that could affect the performance of the system were investigated as well as the possible interferents. At the optimum conditions, for 2 min of preconcentration time (9.9 ml of sample volume), the developed methodology presented a detection limit of 1.1 microg L(-1), a RSD of 3.5% at 10 microg L(-1) and an analytical throughput of 24 h(-1). Whereas, for 4 min of the preconcentration time (19.8 ml of sample volume) a detection limit of 0.98 microg L(-1), a RSD of 6.5% at 5 microg L(-1) and a sampling frequency of 13 h(-1) are reported.  相似文献   

19.
An on-line dysprosium preconcentration and determination system based on the hyphenation of cloud point extraction (CPE) to flow injection analysis (FIA) associated with ICP-OES was studied. For the preconcentration of dysprosium, a Dy(III)-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol complex was formed on-line at pH 9.22 in the presence of nonionic micelles of PONPE-7.5. The micellar system containing the complex was thermostated at 30 degrees C in order to promote phase separation, and the surfactant-rich phase was retained in a microcolumn packed with cotton at pH 9.2. The surfactant-rich phase was eluted with 4 mol L(-1) nitric acid at a flow rate of 1.5 mL min(-1), directly in the nebulizer of the plasma. An enhancement factor of 50 was obtained for the preconcentration of 50 mL of sample solution. The detection limit value for the preconcentration of 50 mL of aqueous solution of Dy was 0.03 microg L(-1). The precision for 10 replicate determinations at the 2.0 microg L(-1)Dy level was 2.2% relative standard deviation (RSD), calculated from the peak heights obtained. The calibration graph using the preconcentration system for dysprosium was linear with a correlation coefficient of 0.9994 at levels near the detection limits up to at least 100 microg L(-1). The method was successfully applied to the determination of dysprosium in urine.  相似文献   

20.
An on-line zinc preconcentration and determination system implemented with inductively coupled plasma atomic emission spectrometry (ICP-AES) associated with flow injection (FI) was studied. The zinc was retained as zinc-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Zn-(5-Br-PADAP)) complex at pH 9.2. The zinc complex was removed from the knotted reactor (KR) with 30% v/v nitric acid. An enrichment factor of 42 was obtained for the KR system with respect to ICP-AES using pneumatic nebulization. The detection limit for the preconcentration of 10 mL of aqueous solution was 0.09 microg/L. The precision for 10 replicate determinations at the 5 microg/L Zn level was 2.3% relative standard deviation (RSD), calculated with the peak heights obtained. The calibration graph using the preconcentration system for zinc was linear with a correlation coefficient of 0.9997 at levels near the detection limits up to at least 100 microg/L. The method was succesfully applied to the determination of zinc in river water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号