首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure, magnetism, and phase transition of core-shell type CoPt nanoparticles en route to solid solution alloy nanostructures are systematically investigated. The characterization of Co(core)Pt(shell) nanoparticles obtained by a "redox transmetalation" process by transmission electron microscopy (TEM) and, in particular, X-ray absorption spectroscopy (XAS) provides clear evidence for the existence of a core-shell type bimetallic interfacial structure. Nanoscale phase transitions of the Co(core)Pt(shell) structures toward c-axis compressed face-centered tetragonal (fct) solid solution alloy CoPt nanoparticles are monitored at various stages of a thermally induced annealing process and the obtained fct nanoalloys show a large enhancement of their magnetic properties with ferromagnetism. The relationship between the nanostructures and their magnetic properties is in part elucidated through the use of XAS as a critical analytical tool.  相似文献   

2.
In this article, we report the synthesis of "solid solution" and "core-shell" types of well-defined Co--Pt nanoalloys smaller than 10 nm. The formation of these alloys is driven by redox transmetalation reactions between the reagents without the need for any additional reductants. Also the reaction proceeds selectively as long as the redox potential between the two metals is favorable. The reaction between Co(2)(CO)(8) and Pt(hfac)(2) (hfac = hexafluoroacetylacetonate) results in the formation of "solid solution" type alloys such as CoPt(3) nanoparticles. On the other hand, the reaction of Co nanoparticles with Pt(hfac)(2) in solution results in "Co(core)Pt(shell)" type nanoalloys. Nanoparticles synthesized by both reactions are moderately monodispersed (sigma < 10%) without any further size selection processes. The composition of the alloys can also be tuned by adjusting the ratio of reactants. The magnetic and structural properties of the obtained nanoparticles and reaction byproducts are characterized by TEM, SQUID, UV/vis, IR, EDAX, and XRD.  相似文献   

3.
Pt/Co‐core Au‐shell nanoparticles were synthesized via a two‐step route using NaBH4 as a reducing agent. The nanoparticles are characterized by UV‐vis spectroscopy, transmission electron microscopy (TEM) and powder X‐ray diffraction (XRD). The results indicate that the as‐synthesized Pt/Co‐core Au‐shell nanoparticles have a disordered face centered cubic (fcc) structure, whereas the annealed Pt/Co‐core Au‐shell nanoparticles exhibit an ordered face centered tetragonal (fct) structure. Superconducting quantum interference device (SQUID) studies reveal that the coercivity of the annealed Pt/Co‐core Au‐shell nanoparticles increases to 510 Oe after heat treatment at 500 °C for 2 h.  相似文献   

4.
We synthesized Pt monolayer electrocatalysts for oxygen-reduction using a new method to obtain the supporting core–shell nanoparticles. They consist of a Pt monolayer deposited on carbon-supported Co–Pd core–shell nanoparticles with the diameter of 3–4 nm. The nanoparticles were made using a redox-transmetalation (electroless deposition) method involving the oxidation of Co by Pd cations, yielding a Pd shell around the Co core. The quality of the thus-formed core–shell structure was verified using transmission electron microscopy and X-ray absorption spectroscopy, while cyclic voltammetry was employed to confirm the lack of Co oxidation (dissolution). A Pt monolayer was deposited on the Co–Pd core–shell nanoparticles by the galvanic displacement of a Cu monolayer obtained by underpotential deposition. The total noble metal mass-specific activity of this Pt monolayer electrocatalyst was ca. 3-fold higher than that of commercial Pt/C electrocatalysts.  相似文献   

5.
Pt3Co/C electrocatalysts are not stable when operated in real PEMFC conditions but face variations of their chemical composition. The latter signs that Co atoms can segregate from the bulk to the surface of the nanoparticles, which we believe is activated by the formation of surface oxides and the leaching of Co at the surface. Consequently, the alloyed Pt3Co/C nanoparticles slowly evolve towards Pt shell/Pt–Co alloy core structures with depleted Co content and a Pt-enriched shell.  相似文献   

6.
Atomically resolved structures and compositions of Pt alloy nanoparticles were obtained using aberration-corrected high-angle dark field imaging, which was correlated to specific ORR activity based on a Pt surface area. The enhanced specific ORR activity (approximately 2 times relative to Pt) of acid-treated "Pt3Co" nanoparticles can be related to composition variations at the atomic scale and the formation of percolated Pt-rich and Pt-poor regions within individual particles. Upon annealing, we show direct evidence of surface Pt sandwich-segregation structures, which correspond to a specific ORR activity approximately 4 times relative to Pt.  相似文献   

7.
One-pot synthesis of hollow superparamagnetic CoPt nanospheres   总被引:1,自引:0,他引:1  
Hollow metal nanospheres are of interest for a variety of academic and technological applications, including drug delivery, catalysis, plasmonics, and lightweight structural composites. Despite recent advances in synthesizing metal nanostructures with controlled morphologies, there are very few reports of hollow bimetallic nanospheres, although such systems promise to offer advantages over single-metal systems. Here, were report a one-pot synthetic strategy for accessing hollow CoPt nanospheres with a Co-Pt alloy structure. The approach utilizes an in situ Co template and exploits galvanic displacement reactions to selectively dissolve the Co core while depositing a Pt shell. The combination of reducing conditions and a polymer stabilizer appears to allow the Co and Pt to co-reduce and form a Co-Pt fcc alloy phase with a morphology that is templated by the sacrificial Co core. The hollow CoPt nanospheres, which show magnetic hysteresis at low temperatures, are thermally stable up to 300 degrees C. The approach, which adds to a growing toolbox of reactions that yield morphologically controlled magnetic CoPt and FePt nanomaterials, is likely to be general for a variety of alloy systems.  相似文献   

8.
Development of Pt-based oxygen reduction reaction catalysts with high efficiency and high durability is central to the application of proton-exchange membrane fuel cell systems. Pt–Co bimetallic catalysts have drawn extensive attention owing to their capability of delivering high performance and long lifetime for fuel cell applications including light-duty and heavy-duty vehicles. However, further improvements in durability and performance are needed to meet market requirements. To fully exploit the potential of Pt–Co catalysts, new insights into the relationship between catalyst properties and fuel cell performance and durability are needed, and more effective methods to tailor the features of Pt–Co catalysts need to be developed. This review provides a summary and perspective on recent efforts, including work on customizing the Pt shell and Pt:Co ratio, tailoring the crystal structure, and improving carbon support properties, with a particular emphasis on mechanisms leading to enhancement of mass activity, power density, and durability in membrane electrode assembly testing.  相似文献   

9.
The anodic reaction in direct ethanol fuel cells (DEFCs), ethanol oxidation reaction (EOR) faces challenges, such as incomplete electrooxidation of ethanol and high cost of the most efficient electrocatalyst, Pt in acidic media at low temperature. In this study, core‐shell electrocatalysts with an Au core and Pt‐based shell (Au@Pt) are developed. The Au core size and Pt shell thickness play an important role in the EOR activity. The Au size of 2.8 nm and one layer of Pt provide the most optimized performance, having 6 times higher peak current density in contrast to commercial Pt/C. SnO2 as a support also enhances the EOR activity of Au@Pt by 1.73 times. Further modifying the Pt shell with Ru atoms achieve the highest EOR current density that is 15 and 2.5 times of Pt/C and Au@Pt. Our results suggest the importance of surface modification in rational design of advanced electrocatalysts.  相似文献   

10.
In this study, we examined the amount-dependent change in morphology for a series of Au/Pt bimetallic nanoparticles synthesized using chemical reduction. The Au/Pt molar ratio was varied from 1/1 to 1/4 to synthesize Pt shell layers with different thicknesses. We have obtained that these bimetallic nanoparticles can form flower-like nanoparticles. Moreover, an extended X-ray absorption fine structure (EXAFS) analysis was used to demonstrate the structure of Au/Pt bimetallic nanoparticles. The EXAFS results confirmed the formation of a core–shell structure and inter-diffusion between Au and Pt atoms. The composition of the shell layer was found to be Pt-enriched Au/Pt alloy.  相似文献   

11.
Superior catalytic performance for selective 1,3-butadiene (1,3-BD) hydrogenation can usually be achieved with supported bimetallic catalysts. In this work, Pt−Co nanoparticles and Pt nanoparticles supported on metal–organic framework MIL-100(Fe) catalysts (MIL=Materials of Institut Lavoisier, PtCo/MIL-100(Fe) and Pt/MIL-100(Fe)) were synthesized via a simple impregnation reduction method, and their catalytic performance was investigated for the hydrogenation of 1,3-BD. Pt1Co1/MIL-100(Fe) presented better catalytic performance than Pt/MIL-100(Fe), with significantly enhanced total butene selectivity. Moreover, the secondary hydrogenation of butenes was effectively inhibited after doping with Co. The Pt1Co1/MIL-100(Fe) catalyst displayed good stability in the 1,3-BD hydrogenation reaction. No significant catalyst deactivation was observed during 9 h of hydrogenation, but its catalytic activity gradually reduces for the next 17 h. Carbon deposition on Pt1Co1/MIL-100(Fe) is the reason for its deactivation in 1,3-BD hydrogenation reaction. The spent Pt1Co1/MIL-100(Fe) catalyst could be regenerated at 200 °C, and regenerated catalysts displayed the similar 1,3-BD conversion and butene selectivity with fresh catalysts. Moreover, the rate-determining step of this reaction was hydrogen dissociation. The outstanding activity and total butene selectivity of the Pt1Co1/MIL-100(Fe) catalyst illustrate that Pt−Co bimetallic catalysts are an ideal alternative for replacing mono-noble-metal-based catalysts in selective 1,3-BD hydrogenation reactions.  相似文献   

12.
We measured the activity of electrocatalysts, comprising Pt monolayers deposited on PdCo/C substrates with several Pd/Co atomic ratios, in the oxygen reduction reaction in alkaline solutions. The PdCo/C substrates have a core-shell structure wherein the Pd atoms are segregated at the particle’s surface. The electrochemical measurements were carried out using an ultrathin film rotating disk-ring electrode. Electrocatalytic activity for the O2 reduction evaluated from the Tafel plots or mass activities was higher for Pt monolayers on PdCo/C compared to Pt/C for all atomic Pd/Co ratios we used. We ascribed the enhanced activity of these Pt monolayers to a lowering of the bond strength of oxygenated intermediates on Pt atoms facilitated by changes in the 5d-band reactivity of Pt. Density functional theory calculations also revealed a decline in the strength of PtOH adsorption due to electronic interaction between the Pt and Pd atoms. We demonstrated that very active O2 reduction electrocatalysts can be devised containing only a monolayer Pt and a very small amount of Pd alloyed with Co in the substrate. Dedicated to Professor Oleg Petrii on the occasion of his 70th birthday on August 24, 2007.  相似文献   

13.
Core–shell architectures offer an effective way to tune and enhance the properties of noble-metal catalysts. Herein, we demonstrate the synthesis of Pt shell on titanium tungsten nitride core nanoparticles (Pt/TiWN) by high temperature ammonia nitridation of a parent core–shell carbide material (Pt/TiWC). X-ray photoelectron spectroscopy revealed significant core-level shifts for Pt shells supported on TiWN cores, corresponding to increased stabilization of the Pt valence d-states. The modulation of the electronic structure of the Pt shell by the nitride core translated into enhanced CO tolerance during hydrogen electrooxidation in the presence of CO. The ability to control shell coverage and vary the heterometallic composition of the shell and nitride core opens up attractive opportunities to synthesize a broad range of new materials with tunable catalytic properties.  相似文献   

14.
We have performed first-principle density functional theory calculations to investigate how a subsurface transition metal M (M = Ni, Co, or Fe) affects the energetics and mechanisms of oxygen reduction reaction (ORR) on the outermost Pt mono-surface layer of Pt/M(111) surfaces. In this work, we found that the subsurface Ni, Co, and Fe could down-shift the d-band center of the Pt surface layer and thus weaken the binding of chemical species to the Pt/M(111) surface. Moreover, the subsurface Ni, Co, and Fe could modify the heat of reaction and activation energy of various elementary reactions of ORR on these Pt/M(111) surfaces. Our DFT results revealed that, due to the influence of the subsurface Ni, Co, and Fe, ORR would adopt a hydrogen peroxide dissociation mechanism with an activation energy of 0.15 eV on Pt/Ni(111), 0.17 eV on Pt/Co(111), and 0.16 eV on Pt/Fe(111) surface, respectively, for their rate-determining O2 protonation reaction. In contrast, ORR would follow a peroxyl dissociation mechanism on a pure Pt(111) surface with an activation energy of 0.79 eV for its rate-determining O protonation reaction. Thus, our theoretical study explained why the subsurface Ni, Co, and Fe could lead to multi-fold enhancement in catalytic activity for ORR on the Pt mono-surface layer of Pt/M(111) surfaces.  相似文献   

15.
Recently, it has been reported that small Pt/Co bimetallic nanoclusters into hollow carbon spheres (HCS) show outstanding catalytic performances in deriving biomass fuels due to the small particle size and the homogeneous alloying. Thus, the knowledge about the thermal evolution and stability of the nanoclusters into the HCS has a great importance. We have simulated the heating process beyond the melting point for the bare and encapsulated Pt/Co clusters into the HCS with the different sizes of 55, 147, and 309. The different thermodynamic and structural properties of the nanoclusters have also been investigated in this work. Our results show that the nanoclusters are more stable into the HCS than the bare clusters. The melting points of the supported clusters are also higher than the unsupported clusters. The confined nanoclusters have also lower excess energy values than the bare clusters which means that the encapsulation of Pt/Co nanoclusters into the HCS is favorable. The structural investigations show that a core–shell structure cannot be observed for the different supported and unsupported clusters and the initial mixed structure of the different nanoclusters remains also at the melting points. To more investigate this claim, the radial chemical distribution function (RCDF) and radial distribution function (RDF) of the bare and encapsulated clusters have also been calculated and discussed. © 2018 Wiley Periodicals, Inc.  相似文献   

16.
Core–shell architectures offer an effective way to tune and enhance the properties of noble‐metal catalysts. Herein, we demonstrate the synthesis of Pt shell on titanium tungsten nitride core nanoparticles (Pt/TiWN) by high temperature ammonia nitridation of a parent core–shell carbide material (Pt/TiWC). X‐ray photoelectron spectroscopy revealed significant core‐level shifts for Pt shells supported on TiWN cores, corresponding to increased stabilization of the Pt valence d‐states. The modulation of the electronic structure of the Pt shell by the nitride core translated into enhanced CO tolerance during hydrogen electrooxidation in the presence of CO. The ability to control shell coverage and vary the heterometallic composition of the shell and nitride core opens up attractive opportunities to synthesize a broad range of new materials with tunable catalytic properties.  相似文献   

17.
The microstructure of Co/Pt multilayers with large perpendicular magnetic anisotropy (PMA) was investigated before and after energetic ion irradiation. No pronounced microstructural changes were detected at ion doses sufficient to completely reduce the PMA and cause a spin reorientation transition to in-plane. Ion-induced displacement of Co and Pt atoms near Co/Pt interfaces lead to local "roughening" and Co layer strain relaxation, reducing the PMA. The magnetic domain confinement induced by ion irradiation and magnetic patterning by selective ion irradiation were also investigated.  相似文献   

18.
The chemical dealloying mechanism of bimetallic Pt–Co nanoparticles (NPs) and enhancement of their electrocatalytic activity towards the oxygen reduction reaction (ORR) have been investigated on a fundamental level by the combination of X‐ray absorption spectroscopy (XAS) and aberration‐corrected scanning transmission electron microscopy (STEM). Structural parameters, such as coordination numbers, alloy extent, and the unfilled d states of Pt atoms, are derived from the XAS spectra, together with the compositional variation analyzed by line‐scanning energy‐dispersive X‐ray spectroscopy (EDX) on an atomic scale, to gain new insights into the dealloying process of bimetallic Pt–Co NPs. The XAS results on acid‐treated Pt–Co/C NPs reveal that the Co–Co bonding in the bimetallic NPs dissolves first and the remaining morphology gradually transforms to a Pt‐skin structure. From cyclic voltammetry and mass activity measurements, Pt–Co alloy NPs with a Pt‐skin structure significantly enhance the catalytic performance towards the ORR. Further, it is observed that such an imperfect Pt‐skin surface feature will collapse due to the penetration of electrolyte into layers underneath and cause further dissolution of Co and the loss of Pt. The electrocatalytic activity decreases accordingly, if the dealloying process lasts for 4 h. The findings not only demonstrate the importance of appropriate treatment of bimetallic catalysts, but also can be referred to other Pt bimetallic alloys with transition metals.  相似文献   

19.
金晟中  张爱清 《应用化学》2018,35(2):239-244
采用连续多元醇法,以RuCl3·xH2O和PtCl2为前驱体,乙二醇为还原剂,聚乙烯吡咯烷酮为稳定剂的反应体系,并通过调节PtCl2用量和还原温度成功制备了壳层厚度约为1.5个Pt原子层的单分散Ru@Pt核壳结构纳米粒子,利用透射电子显微镜(TEM)、X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)等分析方法对其微观结构、粒径分布、晶型结构、物相组成进行了表征。 结果表明,该纳米粒子分布均匀且基本为球形,平均粒径约为3.57 nm,其中内核直径约为2.49 nm,外壳厚度约为0.55 nm,壳层金属Pt具有很好的晶型,Pt原子主要为{111}晶面,内核金属Ru与外壳金属Pt互相产生了电子效应使Pt的衍射峰和Ru、Pt的电子结合能产生了一定偏移,并初步研究了有效控制该核壳结构纳米粒子壳层厚度和增强核与壳两种金属之间电子效应的因素,使其有望在催化等领域发挥潜在的应用价值。  相似文献   

20.
CoPt nanoparticles supported on a glassy carbon electrode (denoted as CoPt/GC) were prepared by galvanic replacement reaction between electrodeposited Co nanoparticles and K(2)PtCl(6) solution. Scanning electron microscope (SEM) and transmission electron microscope (TEM) were both employed to characterize the CoPt nanoparticles. It was shown that the CoPt nanoparticles have irregular shapes and most of them exhibit a core-shell structure with a porous Co core and a shell of Pt tiny particles. The composition of the CoPt nanoparticles was analyzed by energy-dispersive X-ray spectroscopy (EDX), which depicts a Co : Pt ratio of ca. 21 : 79. Studies of cyclic voltammetry (CV) demonstrated that CoPt/GC possesses a much higher catalytic activity towards CO and methanol electrooxidation than a nanoscale Pt thin film electrode. In situ FTIR spectroscopic studies have revealed for the first time, that a CoPt nanoparticles electrode exhibits abnormal IR effects (AIREs) for IR absorption of CO adsorbed on it. In comparison with the IR features of CO adsorbed on a bulk Pt electrode, the direction of the IR bands of CO adsorbed on the CoPt/GC electrode is inverted completely, and the intensity of the IR bands has been enhanced up to 15.4 times. The AIREs is significant in detecting the adsorbed intermediate species involved in electrocatalytic reactions. The results demonstrated a reaction mechanism of CH(3)OH oxidation on CoPt/GC in alkaline solutions through evidencing CO(L), CO(M), HCOO(-), CO(3)(2-), HCO(3)(-) and CO(2) as intermediate and product species by in situ FTIRS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号