首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The ultrafast laser-excited magnetization dynamics of ferromagnetic (FM) La0.67Sr0.33MnO3 (LSMO) thin films with BiFeO3 (BFO) coating layers grown by laser molecular beam epitaxy are investigated using the optical pump-probe technique. Uniform magnetization precessions are observed in the films under an applied external magnetic field by measuring the time-resolved magneto-optical Kerr effect. The magnetization precession frequencies of the LSMO thin films with the BFO coating layers are lower than those of uncoated LSMO films, which is attributed to the suppression of the anisotropy field induced by the exchange interaction at the interface between the antiferromagnetic order of BFO and the FM order of LSMO.  相似文献   

2.
The electrical and magnetic characteristics of La0.7Sr0.3MnO3 (LSMO) epitaxial manganite films are investigated by different methods under conditions when the crystal structure is strongly strained as a result of mismatch between the lattice parameters of the LSMO crystal and the substrate. Substrates with lattice parameters larger and smaller than the nominal lattice parameter of the LSMO crystal are used in experiments. It is shown that the behavior of the temperature dependence of the electrical resistance for the films in the low-temperature range does not depend on the strain of the film and agrees well with the results obtained from the calculations with allowance made for the interaction of electrons with magnetic excitations in the framework of the double-exchange model for systems with strongly correlated electronic states. Investigations of the magneto- optical Kerr effect have revealed that an insignificant (0.3%) orthorhombic distortion of the cubic lattice in the plane of the NdGaO3(110) substrate leads to uniaxial anisotropy of the magnetization of the film, with the easy-magnetization axis lying in the substrate plane. However, LSMO films on substrates (((LaAlO3)0.3+(Sr2AlTaO6)0.7)(001)) ensuring minimum strain of the films exhibit a biaxial anisotropy typical of cubic crystals. The study of the ferromagnetic resonance lines at a frequency of 9.76 GHz confirms the results of magnetooptical investigations and indicates that the ferromagnetic phase in the LSMO films is weakly inhomogeneous.  相似文献   

3.
Textured LixNi2-xO (LNO) thin films have been fabricated on (001)MgO substrates by pulsed laser deposition technique. The as-deposited LNO films shows a conductivity of 2.5×10-3 Ω m and possess a transmittance of about 35% in the visible region. Subsequent deposition of Sr0.6Ba0.4Nb2O6 (SBN60) thin film on these LNO-coated MgO substrates resulted in a textured SBN layer with a 〈001〉 orientation perpendicular to the substrate plane. Phi scans on the (221) plane of the SBN layer indicated that the films have two in-plane orientations with respect to the substrate. The SBN unit cells were rotated in the plane of the film by ± 8.2° as well as ± 45° with respect to the LNO/MgO substrate. Besides the highly (00l)-orientation, the SBN films also exhibited a dense microstructure as shown by scanning electron microscopy. The electro-optic coefficient (r33) of the SBN film was measured to be 186 pm/V. On the basis of our results, we have demonstrated that the LNO film can be used as a buffer layer as well as a transparent bottom electrode for waveguide applications. The SBN/LNO heterostructure is also a suitable candidate for integrated electro-optics devices. PACS  42.79.Gn; 42.82.Et; 78.20.Ci  相似文献   

4.
The kinetics of magnetization reversal of a thin LSMO film has been studied for the first time. It is shown that the magnetic domain structure critically depends on the conditions of structure formation. In the demagnetized state (after zero-field cooling from T c ), a maze-like domain microstructure with perpendicular magnetization is formed in the film. However, after field cooling and/or saturating magnetization by a field of arbitrary orientation, the [110] direction of spontaneous magnetization in the film plane is stabilized; this pattern corresponds to macrodomains with in-plane magnetization. Further film magnetization reversal (both quasi-static and pulsed) from this state is implemented via nucleation and motion of 180° “head-to-head” domain walls. Upon pulse magnetization reversal, the walls “jump” at a distance proportional to the applied field strength and then undergo thermally activated drift. All dynamic characterisitcs critically depend on the temperature when the latter varies around the room temperature.  相似文献   

5.
Layered cobalt oxides Ca3Co4O9 thin films have been grown directly on c-cut sapphire substrates using pulsed laser deposition. X-ray diffraction and transmission electron microscopy characterizations show that the deposited films present the expected monoclinic structure and a texture along the direction perpendicular to the Al2O3(001) plane. The Ca3Co4O9 structure presents six variants in the film plane. Rutherford backscattering spectroscopy shows that the films are stoichiometric and that the film thickness agrees with the nominal value. The susceptibility χ of the films, recorded along the c-axis of the substrate, after field cooling and zero field cooling in an applied field of 1 kOe shows two magnetic transitions at 19 and 370 K which agree well with previous findings on single crystal samples. In turn, at low temperature (5 K), the magnetization curve along the c-axis exhibits coercive field and remanent magnetization much smaller than those reported for bulk samples, which can be related to the influence of structural variants and structural defects.  相似文献   

6.
Preferential growth of different crystal planes in layered Bi2Te3 thin films with each layer <40 nm has been achieved by a simple magnetron co-sputtering method. The preferential growth of (015) plane or (001) was achieved at special depositing conditions due to the more sufficient growth along the in-plane direction induced by the enhanced diffusion of atoms and lower deposition rate. The Bi2Te3 film with preferential growth of (001) plane possesses about two times higher electrical conductivity and Seebeck coefficient as compared to the film with preferential growth of (015) plane, due to the greatly enhanced carrier mobility. Furthermore, the thermal conductivity has been suppressed due to more phonon scattering at grain boundaries, compared with ordinary Bi2Te3 alloys and films.  相似文献   

7.
Thin films of La0.7Sr0.3MnO3 were grown by molecular beam epitaxy on (001)LaAlO3 crystals. High resolution X-ray diffraction analysis proves the presence of twins in the films at room temperature, showing that the twin structure of the substrate which forms at the ferroelastic transition at TF = 813 K served as a template for the film microstructure. Magnetic measurements indicate a thermomagnetic irreversibility which is ascribed to the quenched disorder related to twinning and discussed in terms of coexisting ferromagnetic and spin disordered regions connected with the undeformed domain cores and strained domain walls respectively.  相似文献   

8.
Epitaxial La1−xSrxMnO3 (LSMO) films were prepared by excimer laser-assisted metal organic deposition (ELAMOD) at a low temperature using ArF, KrF, and XeCl excimer lasers. Cross-section transmission electron microscopy (XTEM) observations confirmed the epitaxial growth and homogeneity of the LSMO film on a SrTiO3 (STO) substrate, which was prepared using ArF, KrF, and XeCl excimer lasers. It was found that uniform epitaxial films could be grown at 500 °C by laser irradiation. When an XeCl laser was used, an epitaxial film was formed on the STO substrate at a fluence range from 80 to 140 mJ/cm2 of the laser fluence for the epitaxial growth of LSMO film on STO substrate was changed. When the LaAlO3 (LAO) substrate was used, an epitaxial film was only obtained by ArF laser irradiation, and no epitaxial film was obtained using the KrF and XeCl lasers. When the back of the amorphous LSMO film on an LAO substrate was irradiated using a KrF laser, no epitaxial film formed. Based on the effect of the wavelength and substrate material on the epitaxial growth, formation of the epitaxial film would be found to be photo thermal reaction and photochemical reaction. The maximum temperature coefficient of resistance (TCR) of the epitaxial La0.8Sr0.2MnO3 film on an STO substrate grown using an XeCl laser is 4.0%/K at 275 K. XeCl lasers that deliver stabilized pulse energies can be used to prepare LSMO films with good a TCR.  相似文献   

9.
BiFeO3 (BFO) thin films with BaTiO3 (BTO) or SrTiO3 (STO) as buffer layer were epitaxially grown on SrRuO3-covered SrTiO3 substrates. X-ray diffraction measurements show that the BTO buffer causes tensile strain in the BFO films, whereas the STO buffer causes compressive strain. Different ferroelectric domain structures caused by these two strain statuses are revealed by piezoelectric force microscopy. Electrical and magnetical measurements show that the tensile-strained BFO/BTO samples have reduced leakage current and large ferroelectric polarization and magnetization, compared with compressively strained BFO/STO. These results demonstrate that the electrical and magnetical properties of BFO thin films can be artificially modified by using a buffer layer.  相似文献   

10.
Solid solution Sr0.5Ba0.5Nb2O6 films have been synthesized on a (111)Pt/(001)Si substrate by rf deposition in an oxygen atmosphere. The depolarized Raman spectra, the structure, and the dielectric characteristics of the films have been studied over a wide temperature range. It is found that the films were singlephase, had the tetragonal tungsten bronze structure, and had a pronounced axial texture with axis 001 directed perpendicular to the substrate surface. It is shown that the film material undergoes a diffuse phase transition to the state of a relaxor ferroelectric in the temperature range 300–425 K. Possible reasons of the regularities observed are discussed.  相似文献   

11.
Structural investigation using X-ray synchrotron radiation has been performed on SrRuO3/SrTiO3/SrRuO3 epitaxial heterostructures, with each constituent layer a few unit cell thick grown on (001) SrTiO3 substrate. Detailed information on the evolution of the in-plane lattice structure has been obtained, in these heterostructures, by grazing incidence diffraction measurements. The samples have been grown by low-pressure pulsed laser deposition. Under our deposition conditions, SrRuO3 layers grow with an elongated cell perpendicular to the substrate surface. The in-plane pseudocubic lattice parameters do not match the in-plane square SrTiO3 structure even in the case of very thin SrRuO3 layers. Such a distortion was found to decrease with increasing the thickness of the SrTiO3 barrier layer.  相似文献   

12.
Composite structures consisting of (001)-oriented SrTiO3 (STO)/La0.7Sr0.3MnO3 (LSMO) films of 30 nm thickness, grown on an (001) Pb(Mg1/3Nb2/3)TiO3– 28 mol.% PbTiO3 piezoelectric relaxor-ferroelectric single-crystalline wafer were investigated by means of Wide-Angle X-ray Diffraction (WAXRD) in situ under influence of a d.c. electric field with strength E up to ±18 kV/cm. The WAXRD measurements of the films and substrate reflection profiles resulted in a determination of the strain s in the films and the substrate separately. The strained state of the STO/LSMO films is effectively controlled by a huge converse piezoelectric effect of the PMN-PT substrate. The coefficients of coupling between electric-field-induced out-of-plane strain in the films and in the substrate for the composite system STO/LSMO/PMN-PT are obtained.  相似文献   

13.
ZnO thin film growth prefers different orientations on the etched and unetched SrTiO 3(STO)(110) substrates.Inclined ZnO and cobalt-doped ZnO(ZnCoO) thin films are grown on unetched STO(110) substrates using oxygen plasma assisted molecular beam epitaxy,with the c-axis 42 inclined from the normal STO(110) surface.The growth geometries are ZnCoO[100]//STO[110] and ZnCoO[111]//STO[001].The low temperature photoluminescence spectra of the inclined ZnO and ZnCoO films are dominated by D 0 X emissions associated with A 0 X emissions,and the characteristic emissions for the 2 E(2G)→ 4A2(4F) transition of Co 2+ dopants and the relevant phonon-participated emissions are observed in the ZnCoO film,indicating the incorporation of Co 2+ ions at the lattice positions of the Zn 2+ ions.The c-axis inclined ZnCoO film shows ferromagnetic properties at room temperature.  相似文献   

14.
40-to 120-nm-thick (001)La0.67Ca0.33MnO3 films grown through laser evaporation on (001)NdGaO3 were studied. The lattice parameters of the La0.67Ca0.33MnO3 films measured in the substrate plane (a=3.851 Å) and along the normal to its surface (a=3.850 Å) practically coincided with that of the pseudocubic neodymium gallate. The unit-cell volume of the La0.67Ca0.33MnO3 film was slightly smaller than that of stoichiometric bulk samples. The position of the maximum in the temperature dependence of electrical resistivity did not depend on the thickness of the La0.67Ca0.33MnO3 film. The negative magnetoresistance (MR≈?0.25, H=0.4 T) of La0.67Ca0.33MnO3 films reached a maximum at 239–244 K.  相似文献   

15.
We have grown (110)-oriented SrTiO3 (STO) thin films on silicon without any buffer layer, by means of pulsed laser deposition technique. The crystal structures of the grown films were examined by X-ray diffraction analysis including θ–2θ scan and rocking curve as well as Laue diffraction methods. STO films with single (110) out-of-plane orientation were formed on all (100), (110) and (111)-oriented Si substrates. The in-plane alignments for the epitaxial STO films grown directly on Si (100) were found as STO[001]//Si[001] and STO[11̄0]//Si[010]. The results should be of interest for better understanding of the growth of perovskite oxide thin films on silicon wafers. PACS 77.55.+f; 68.55.JK; 81.15Fg  相似文献   

16.
Thin films of La0.7Ca0.3MnO3 were successfully grown epitaxially on (100) single-crystal SrTiO3 substrates by excimer-laser assisted metal-organic deposition. Initial amorphous LCMO thin films were obtained by metal-organic deposition at 500 °C. Crystallization and epitaxial growth of the films was achieved using a KrF pulsed laser irradiation while the film/substrate samples were kept at 500 °C. High resolution transmission electron microscopy observations on cross-sections demonstrate the formation mechanism of the epitaxial films. The crystallization process starts at the LCMO/STO interface and grows by increasing the number of laser shots. A fully crystallized film was obtained after 5 min of irradiation. The film/substrate interface was found to be sharp and abrupt. The temperature dependence of the resistance R(T) shows various behaviors, starting from insulating to semiconducting and metal–insulator transition material during the formation of the manganite film. The oxygen content was also improved by increasing the irradiation time. Promising values of the temperature coefficient of resistance were obtained from these manganite films for prospect integration in silicon based microbolometric devices. PACS 81.15.-z; 81.15.Np; 73.61.-r; 71.30.+h  相似文献   

17.
With a Curie point at 370?K, the half-metal (La0.7Sr0.3)MnO3 (LSMO) is one of the most interesting candidates for electronic devices based on tunnel magnetoresistance. SrTiO3 (STO) is up to now the best substrate for the epitaxy of suitable thin films of LSMO. The pseudocubic unit cell of rhombohedral LSMO has a parameter a LSMO such that (a STO ? a LSMO)/a LSMO = +?0.83% (where a STO is the parameter of cubic STO) and an angle of 90.26°. As strained growth is tetragonal, relaxation implies recovery of both the pseudocubic parameter and of the original angle. In the LSMO layers that we prepare by pulsed-laser deposition, we show that these two processes are quite independent. The angular distortion is partially recovered by twinning in films 25?nm thick, while recovery of the parameter never occurs in the thickness range that we explored (up to 432?nm). A relaxation, however, takes place above a thickness of 100?nm, associated with a transition from two-dimensional to three-dimensional columnar growth. It is accompanied by chemical fluctuations. Our magnetic measurements exhibit Curie temperatures and magnetic moments very close to the bulk values in those layers where the crystal parameter is strained but the angle partially relaxed.  相似文献   

18.
Transmission electron microscopy structural characterization of HfO2/GaAs(001) heterostructures grown by molecular beam epitaxy with a film thickness of ∼ 5 nm was conducted. The study indicates that the room-temperature as-grown films are amorphous and the films crystallize into the monoclinic phase upon in situ post annealing at 540 °C in the growth chamber. Both types of films show an atomically sharp interface with GaAs(001) substrates. The crystalline monoclinic HfO2 films exhibit c-oriented epitaxy on the substrate and consist of 90° domains. The formation of 90° domains in the heterostructures, the details of the domain-wall configurations, and the possible impact of the walls and the frequently observed anti-phase boundaries in the films on electrical properties of the heterostructures are discussed. PACS 68.37.Lp; 68.37.Og; 68.35.bg  相似文献   

19.
CaCu3Ti4O12 (CCTO) thin films were successfully prepared on LaAlO3 substrates by pulsed laser deposition technique. We measured the nonlinear optical susceptibility of the thin films using Z-scan method at a wavelength of 532 nm with pulse durations of 25 ps and 7 ns. The large values of the third-order nonlinear optical susceptibility, χ (3), of the CCTO film were obtained to be 2.79×10−8 esu and 3.30×10−6 esu in picosecond and nanosecond time regimes, respectively, which are among the best results of some representative nonlinear optical materials. The origin of optical nonlinearity of CCTO films was discussed. The results indicate that the CCTO films on LaAlO3 substrates are promising candidate materials for applications in nonlinear optical devices.  相似文献   

20.
TiO2 nanoparticles with enhanced solid solution of Cr up to 16 wt% in polymorphs of rutile, anatase, brookite, α-PbO2-type, and occasionally baddeleyite-type were synthesized via pulse laser ablation on ceramic TiO2 target dissolved with Cr2O3 or clamped Cr/Ti plates in air. Analytical electron microscopic observations indicated these nanocondensates have prevalent crystallographic shear (CS) along specific planes to form superstructures. The rutile type typically shows (100) and (010) CS besides the conventional ones rotating about the [111] zone axis as reported for ambient samples. The CS planes are parallel to (001) for anatase, (001) and ([`1] \overline{1} 10) for brookite, whereas (001) and {1[`3] \overline{3} 1} for the α-PbO2-type TiO2 with varied extent of Cr dissolution. Surface modification, as a result of Cr dissolution and/or internal stress, was observed for all the polymorphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号