首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The results of theoretical and experimental studies of the cavitation phenomena in the volume of a moving liquid jet after its passing through thin and long oriented channels in dielectrics are considered. It is shown that the stationary generation of intense directional radiation in the optical range occurs in the moving jet volume as a threshold pressure is reached in the liquid (pure spindle oil). The parameters of radiation are close to those of laser radiation. The effective temperature of the generation region was estimated as corresponding to 50–100 eV. In some cases, optical radiation is accompanied by the pulsed generation of directional gamma radiation. These processes are accompanied by a sequence of high-voltage electric discharges of a great length in the liquid bulk and at the surface, corresponding to potential differences of 50–100 kV. One of the causes of the observed phenomena can be energetically favorable nuclear fusion reactions involving light nuclei in the liquid jet volume. It was shown that such processes can be efficiently stimulated by multibubble cavitation.  相似文献   

2.
3.
The radiation processes associated with a supersonic water jet exhausting from a narrow channel are considered. It has been found for the first time that the output of the channel and the initial portion of the jet are sources of intense X-radiation, generation of which is related to cavitation processes in the water jet bulk and subsequent excitation of shock waves. The frequency of X-radiation depends on the types of atoms on a radiating surface (for a jet, it is water; for a channel, the metal atoms on the surface) and increases with the charge of atoms. The total X-ray activity of an experimental setup in the mode of jet exhaust reaches 0.1 Ci. It is found for the first time that the impact of shock acoustic waves, which are formed in the air as a result of cavitation jets of water, on distant screens leads to the generation of a quasi-coherent directional X-ray emission from the back side of these screens. The spatial parameters of this radiation depend on the shape and cross section of the screen and the spatial characteristics of the shock wave.  相似文献   

4.
The acoustomechanic efficiency of a turbulent jet is determined as the ratio of acoustic radiation power to the kinetic energy flux of the jet. According to the Lighthill acoustic analogy, the acoustomechanic efficiency of axially symmetric jets is proportional to the fifth power of the Mach number. In this paper, on the basis of an experimental study and an analysis of published data, the influence of various factors that can affect the structure of a jet and, consequently, its acoustomechanic efficiency is investigated. In particular, the influence of water injection on the reduction of the jet noise is analyzed. The results of analyzing experimental data show that a systematic deviation from the relation between acoustic and mechanical jet energies obtained from the Lighthill acoustic analogy arises in the case of the outflow of low-velocity jets of low density and with the development of longitudinal vorticity in the flow.  相似文献   

5.
A Photon Monte Carlo method combined with a composition PDF method is employed to model radiative heat transfer in combustion applications. Turbulence-radiation interactions (TRIs) can be fully taken into account using the proposed method. Sandia's Flame D and artificial flames derived from it are simulated and good agreement with experimental data is found. The effects of different TRI components are investigated. It is shown that, to predict the radiation field accurately, emission TRI must be taken into account, while, as expected, absorption TRI is negligible in the considered nonsooting methane/air jet flames if the total radiation quantities are concerned, but non-negligible for evaluation of local quantities. The influence of radiation on the turbulent flow field is also discussed.  相似文献   

6.
The sound field radiating from a jet is strongly dependent upon the turbulence in the jet. To describe the sound sources in a hot jet, a method has been developed, based upon the measurement of infra-red radiation of the jet, and a hybrid processing of the measured signal, which enables the computation of characteristic properties of the turbulence at various points inside the jet (convection speed, integral length scale, life time and intensity of turbulence).From these quantities the acoustic far field can be mapped, as a function of the polar distribution of the spectrum, the turbulence intensity and the total sound pressure field.  相似文献   

7.
The results of an experimental study of the impact of the focused pulsed-periodic radiation from a CO2 laser on a gas-dynamic structure in a supersonic jet are presented. The radiation of the CO2 laser is propagated across the stream and focused by a lens on the axis of the supersonic jet. To register the flow structure, a shadow scheme with a slit and a flat knife located along the flow is used. The image is fixed by a speed camera with an exposure time of 1.5 μs and a frame rate of 1000 1/s. In the flow, the plasma initiated by the pulsedperiodic laser is visualized in order to identify and determine the period of plasma development, as well as the motion of the initial front of the shock wave. It is shown that at the transverse input of laser radiation into the stream the periodic structure of the thermal trace is created with the formation of an unsteady shock wave from the energy release zone. At small repetition rates of laser radiation pulses, the thermal spot interacts with the flow in the pulsed mode. It is shown that elliptic nonstationary shock waves are formed only at low subsonic flow velocities and in a stationary atmosphere. The process of nonstationary ignition by an optical discharge of a methane–air mixture during a subsonic outflow into a motionless atmosphere is shown experimentally. The results of optical visualization indicate burning in the trace behind the optical discharge region.  相似文献   

8.
Experimental evidence shows that a liquid jet in air is an acoustic waveguide having a cutoff frequency inversely proportional to the jet diameter. Ultrasound applied to the jet supply liquid can propagate within the jet when the acoustic frequency is near to or above the cutoff frequency. Modulated radiation pressure is used to stimulate large amplitude deformations and the breakup of the jet into drops. The jet response to the modulated internal ultrasonic radiation pressure was monitored along the jet using (a) an optical extinction method and (b) images captured by a video camera. The jet profile oscillates at the frequency of the radiation pressure modulation and where the response is small, the amplitude was found to increase in proportion to the square of the acoustic pressure amplitude as previously demonstrated for oscillating drops [P.L. Marston and R.E. Apfel, J. Acoust. Soc. Am. 67, 27-37 (1980)]. Small amplitude deformations initially grow approximately exponentially with axial distance along the jet. Though aspects of the perturbation growth can be approximated from Rayleigh's analysis of the capillary instability, some detailed features of the observed jet response to modulated ultrasound are unexplained neglecting the effects of gravity.  相似文献   

9.
The results of experimental study of explosive radiation sources based on pulsed injection of a cumulative plasma jet into atmospheric air are considered. The injection process is accompanied with intense vortex formation as well as the formation of a large-scale toroidal plasma vortex. High-power electromagnetic radiation in the optical range is generated due to shock-wave processes during deceleration of a plasma jet in air and plasma-chemical processes in the vortex. The temporal structure of a radiation pulse being generated contains components from the micro- and millisecond range. For a 20-g mass of the explosive charge, a peak radiation power of 300 kW/sr and an energy yield of 400–600 J/sr integrated over the emission spectrum are attained. The efficiency of conversion of the chemical energy of the explosive into radiation is 5.0–7.5%.  相似文献   

10.
The radiation of internal (or core) noise for aircraft turbojet or turbofan engines is studied analytically. The geometry of a typical engine is simplified for analytical considerations to a hemispherical shell with a jet flow and internal sound emanating through a circular hole on the axis. A linearized theory is used to derive a flow modified spherical wave equation. A forced separation technique is used to produce a modified Legendre equation describing the angular variation of the acoustic radiation field. Then a numerical technique is described for obtaining a general field solution by progressively imposing continuity of pressure across hemispherical shells as the solution is marched from near field to the far field. In a companion paper, numerical results are presented and compared with experimental results from a test configuration identical to that described by the theory.  相似文献   

11.
The formation of a jet of a nonequilibrium multiply charged ion plasma is studied in the inhomogeneous gas jet. It is shown that the geometrical divergence of the jet restricts the maximum ion charge state and results in the spatial localization of the discharge. Stationary solutions corresponding to such regimes are constructed. The model proposed can be used to optimize modern experiments on generation of hard UV radiation due to the line emission of multiply ionized atoms in a gas jet heated by high-power millimeter and submillimeter radiation.  相似文献   

12.
In the present study, patch near-field acoustical holography was used in conjunction with a multireference, cross-spectral sound pressure measurement to visualize the sound field emitted by a subsonic jet and to predict its farfield radiation pattern. A strategy for microphone array design is described that accounts for the low spatial coherence of aeroacoustic sources and for microphone self-noise resulting from entrained flow near the jet. In the experiments, a 0.8-cm-diameter burner was used to produce a subsonic, turbulent jet with a Mach number of 0.26. Six fixed, linear arrays holding eight reference microphones apiece were disposed circumferentially around the jet, and a circular array holding sixteen, equally spaced field microphones was traversed along the jet axis to measure the sound field on a 30-cm-diameter cylindrical surface enclosing the jet. The results revealed that the jet could be modeled as a combination of eleven uncorrelated dipole-, quadrupole-, and octupole-like sources, and the contribution of each source type to the total radiated sound power could be identified. Both the total sound field reconstructed in a three-dimensional space and the farfield radiation directivity obtained by using the latter model were successfully validated by comparisons to directly measured results.  相似文献   

13.
We present an investigation of the acoustic scattering due to the presence of a flat plate in the vicinity of a turbulent subsonic jet. Experiments have been performed to measure changes in the velocity and sound fields for Mach numbers ranging from 0.4 to 0.6, and for distances between the plate and the jet axis ranging from 1 to 2 jet diameters. Results show only very slight changes in the mean flow induced by the plate, and no differences in the velocity fluctuation amplitudes on the jet centreline, suggesting that wave-packet models derived for jets without installation effects may be representative of the installed case, at least for the jet–plate distances considered here. The acoustic results, on the other hand, include a significant increase in the low-frequency sound radiation, and phase opposition between the shielded and unshielded sides of the plate. There is an exponential decay of the scattered sound with increasing jet–plate distance, suggesting that low-frequency radiation is due to the scattering of evanescent hydrodynamic wavepackets in the jet near field. To model this phenomenon, we calculate sound generation from wave-packet sources in two ways: on one hand we use a tailored Green?s function that accounts for the presence of a semi-infinite, rigid flat plate; and, on the other, we solve numerically the Helmholtz equation, with boundary conditions representative of a finite flat plate, using a fast multipole boundary element method. In agreement with the experimental measurements, numerical calculations capture the phase opposition between shielded and unshielded sides, and the scattered sound depends exponentially on the position of the plate. This exponential dependence is related to non-compact effects associated with wavepackets, as compact sources would lead to an algebraic dependence. Acoustic pressure directivities computed for the finite and semi-infinite flat plates agree well where acoustic reflection and diffraction from the trailing edge of the plates are concerned. However, additional diffraction effects associated with the leading and lateral edges of the finite plate, and which take the form of multiple lobes in the directivity, are illustrated by the comparison. As the plate dimensions are increased, i.e. the Helmholtz number is increased, the solution approaches that obtained for the semi-infinite plate.  相似文献   

14.
We developed and tested a new method for temperature measurements of near-LTE air plasmas at atmospheric pressure. This method is specifically suitable for plasmas at relatively low gas temperature (800–1700 K) with no appropriate radiation for direct spectroscopic temperature measurements. Corona discharge producing cold non-equilibrium plasma is employed as a source of excitation and is placed into the microwave plasma jet. The gas temperature of the microwave plasma jet is determined as the rotational temperature of N2? produced in the corona discharge. The corona probe temperature measurement was tested by the use of a thermocouple. We found a fairly good agreement between the two methods after correcting the thermocouple measured temperatures for radiative losses. The corona probe method can be generally applied to determine the temperature of the near-LTE plasmas and contrary to the thermocouple it can be used for higher plasma temperatures and is not affected by radiative losses and problems of interaction with the microwave plasma and electromagnetic fields.  相似文献   

15.
An experimental installation with a laser plasmatron based on a continuous wave CO2 laser with a radiation power of up to 3.5 kW has been created. The plasmatron design makes it possible to bring out the plasma jet into atmospheric air both along and across the laser beam direction. The spatial temperature distributions on the metal substrate surface heated by the plasma jet are measured. The threshold power for optical discharge maintenance as a function of the gas flow rate and the focal length of the focusing lens are obtained for an Ar and Ar/CH4/H2 gas mixture under atmospheric pressure; the radiation spectrum of the discharge plasma is measured. A one-dimensional model of the discharge for estimation of its geometrical parameters in a convergent laser beam with consideration of radiation refraction on the discharge is given.  相似文献   

16.
A Reynolds-Averaged Navier–Stokes (RANS) simulation of the semi-industrial International Flame Research Foundation (IFRF) furnace is performed using a non-adiabatic Conditional Source-term Estimation (CSE) formulation. This represents the first time that a CSE formulation, which accounts for the effect of radiation on the conditional reaction rates, has been applied to a large scale semi-industrial furnace. The objective of the current study is to assess the capabilities of CSE to accurately reproduce the velocity field, temperature, species concentration and nitrogen oxides (NOx) emission for the IFRF furnace. The flow field is solved using the standard k–ε turbulence model and detailed chemistry is included. NOx emissions are calculated using two different methods. Predicted velocity profiles are in good agreement with the experimental data. The predicted peak temperature occurs closer to the centreline, as compared to the experimental observations, suggesting that the mixing between the fuel jet and vitiated air jet may be overestimated. Good agreement between the species concentrations, including NOx, and the experimental data is observed near the burner exit. Farther downstream, the centreline oxygen concentration is found to be underpredicted. Predicted NOx concentrations are in good agreement with experimental data when calculated using the method of Peters and Weber. The current study indicates that RANS-CSE can accurately predict the main characteristics seen in a semi-industrial IFRF furnace.  相似文献   

17.
Numerical simulations of sound radiation from perturbed round jets are used, firstly to explore the structure of the sound sources and then to carry out a parametric study of the effect of jet Mach number and jet temperature. The simplified model problem includes a steady base jet flow, maintained in the absence of disturbances, superimposed with instability waves that are free to interact nonlinearly. Simulations over a range of subsonic jet Mach numbers show that a nonlinear mechanism dominates over a linear mechanism for low-frequency sound radiation, while for supersonic Mach numbers the linear mechanism is dominant. Additional insight is gained from a frequency-wavenumber analysis, including a transformation in the radial direction. With this decomposition, the acoustic field is located by the arc of a circle in plots of radial against streamwise wavenumber for discrete frequencies. The transformation is applied to both the pressure field, showing the sound directivity, and to selected source terms, showing characteristic directivity patterns for the streamwise and radial quadrupole terms. Decreasing the Mach number leads to a reduction in amplitude of the sources and of the sound radiation. Simulations with broadband forcing show that the qualitative effects of Mach number and jet heating are captured by this approach, which requires less resolution than a direct numerical simulation. A significant increase in the strength of the acoustic radiation for cold jets is observed, which is worthy of further investigation.  相似文献   

18.
液滴发生器产生液滴的尺寸和间距影响液滴层的辐射和蒸发特性,液滴尺寸及间距的可控性值得重点关注。根据Weber的射流不稳定修正方程,确定了均匀液滴流产生的无量纲波数及扰动频率范围,结合射流质量守恒,分析了均匀液滴流中液滴的尺寸和间距与无量纲波数的关系。在不同喷孔直径和射流压力下,对理论和实验结果进行了对比,验证了液滴尺寸和液滴间距的理论计算结果,为液滴层辐射蒸发特性的研究提供了依据。  相似文献   

19.
空心旋转液体射流初始阶段运动规律的研究   总被引:5,自引:2,他引:3  
应用质量守恒定律和动量守恒定律,建立了描述空心旋转液体射流初始阶段运动的非线 性常微分方程组;该方程组可以用数值方法方便地求解。理论计算结果与实验拍摄到的射流照片吻 合很好。本结果表示射流受挑动失稳破碎成液滴前的最基本运动状态,是进一步从理论上研究空心 旋转射流破碎雾化机理的基础。  相似文献   

20.
A pulsed plasma generator ignited by plasma produced by laser radiation is described. The plasma generator can provide a relatively high-velocity plasma jet of specific chemical composition. The principal parameters of the plasma jet (its velocity, charged particle concentration, and temperature) have been measured and the properties of the plasma jet have been found to be independent of the polarity of the plasma generator ring electrode.The authors are grateful to M. A. El'yashevich for discussing the present paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号