首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The scrap charge optimization problem in the brass casting process is a critical management concern that aims to reduce the charge while preventing specification violations. Uncertainties in scrap material compositions often cause violations in product standards. In this study, we have discussed the aleatory and epistemic uncertainties and modelled them by using probability and possibility distributions, respectively. Mathematical models including probabilistic and possibilistic parameters are generally solved by transforming one type of parameter into the other. However, the transformation processes have some handicaps such as knowledge losses or virtual information production. In this paper, we have proposed a new solution approach that needs no transformation process and so eliminates these handicaps. The proposed approach combines both chance-constrained stochastic programming and possibilistic programming. The solution of the numerical example has shown that the blending problem including probabilistic and possibilistic uncertainties can be successfully handled and solved by the proposed approach.  相似文献   

2.
In this paper, we study a single-sink transportation problem in which the production capacity of the suppliers and the demand of the single customer are stochastic. Shipments are performed by capacitated vehicles, which have to be booked in advance, before the realization of the production capacity and the demand. Once the production capacity and the demand are revealed, there is an option to cancel some of the booked vehicles against a cancellation fee; if the quantity shipped from the suppliers using the booked vehicles is not enough to satisfy the demand, the residual quantity is purchased from an external company. The problem is to determine the number of vehicles to book in order to minimize the total cost. We formulate a two-stage and a multistage stochastic mixed integer linear programming models to solve this problem and test them on a real case provided by Italcementi, the primary Italian cement producer and the fifth largest cement producer in the world. We test the influence of different scenario-tree structures on the solutions of the problem, as well as sensitivity of the results with respect to the cancellation fee.  相似文献   

3.
Manfred Schl 《PAMM》2003,3(1):17-19
The Cramér‐Lundberg insurance model is studied where the risk process can be controlled by reinsurance and by investment in a financial market. The performance criterion is the ruin probability. The problem can be imbedded in the framework of discrete‐time stochastic dynamic programming. Basic tools are the Howard improvement and the verification theorem. Explicit conditions are obtained for the optimality of employing no reinsurance and of not investing in the market.  相似文献   

4.
In this contribution, we present the problem of shape optimization of the plunger cooling which comes from the forming process in the glass industry. We look for a shape of the inner surface of the insulation barrier located in the plunger cavity so as to achieve a constant predetermined temperature on the outward surface of the plunger. A rotationally symmetric system, composed of the mould, the glass piece, the plunger, the insulation barrier and the plunger cavity, is considered. The state problem is given as a multiphysics problem where solidifying molten glass is cooled from the inside by water flowing through the plunger cavity and from the outside by the environment surrounding the mould.The cost functional is defined as the squared \(L^2_r\) norm of the difference between a prescribed constant and the temperature on the outward boundary of the plunger. The temperature distribution is controlled by changing the insulation barrier wall thickness.The numerical results of the optimization to the required target temperature 800 ?C of the outward plunger surface together with the distribution of temperatures along the interface between the plunger and the glass piece before, during and after the optimization process are presented.  相似文献   

5.
This work focuses on finding optimal barrier policy for an insurance risk model when the dividends are paid to the share holders according to a barrier strategy. A new approach based on stochastic optimization methods is developed. Compared with the existing results in the literature, more general surplus processes are considered. Precise models of the surplus need not be known; only noise-corrupted observations of the dividends are used. Using barrier-type strategies, a class of stochastic optimization algorithms are developed. Convergence of the algorithm is analyzed; rate of convergence is also provided. Numerical results are reported to demonstrate the performance of the algorithm.  相似文献   

6.
In modelling and managing complex environmental systems, inherent uncertainties of all relevant natural processes are to be taken into consideration. In the present paper diverse stochastic modelling and optimization approaches for handling such problems (primarily in the field of water quality analysis and control) are highlighted, drawing on the findings of case studies and real-world applications.  相似文献   

7.
Stochastic network optimization models for investment planning   总被引:4,自引:0,他引:4  
We describe and compare stochastic network optimization models for investment planning under uncertainty. Emphasis is placed on multiperiod a sset allocation and active portfolio management problems. Myopic as well as multiple period models are considered. In the case of multiperiod models, the uncertainty in asset returns filters into the constraint coefficient matrix, yielding a multi-scenario program formulation. Different scenario generation procedures are examined. The use of utility functions to reflect risk bearing attitudes results in nonlinear stochastic network models. We adopt a newly proposed decomposition procedure for solving these multiperiod stochastic programs. The performance of the models in simulations based on historical data is discussed.Research partially supported by National Science Foundation Grant No. DCR-861-4057 and IBM Grant No. 5785. Also, support from Pacific Financial Companies is gratefully acknowledged.  相似文献   

8.
In this paper a stochastic version of the set packing problem (SPP), is studied via scenario analysis. We consider a one-stage recourse approach to deal with the uncertainty in the coefficients. It consists of maximizing in the stochastic SPP a composite function of the expected value minus the weighted risk of obtaining a scenario whose objective function value is worse than a given threshold. The splitting variable representation is decomposed by dualizing the nonanticipativity constraints that link the deterministic SPP with a 0-1 knapsack problem for each scenario under consideration. As a result a (structured) larger pure 0-1 model is created. We present several procedures for obtaining good feasible solutions, as well as a preprocessing approach for fixing variables. The Lagrange multipliers updating is performed by using the Volume Algorithm. Computational experience is reported for a broad variety of instances, which shows that the new approach usually outperforms a state-of-the-art optimization engine, producing a comparable optimality gap with smaller (several orders of magnitude) computing time.  相似文献   

9.
We study a stochastic optimization problem under constraints in a general framework including financial models with constrained portfolios, labor income and large investor models and reinsurance models. We also impose American-type constraint on the state space process. General objective functions including deterministic or random utility functions and shortfall risk loss functions are considered. We first prove existence and uniqueness result to this optimization problem. In a second part, we develop a dual formulation under minimal assumptions on the objective functions, which are the analogue of the asymptotic elasticity condition of Kramkov and Schachermayer (1999).  相似文献   

10.
The minimal spanning tree problem has been well studied and until now many efficient algorithms such as [5,6] have been proposed. This paper generalizes it toward a stochastic version, i.e., considers a stochastic spanning tree problem in which edge costs are not constant but random variables and its objective is to find an optimal spanning tree satisfying a certain chance constraint. This problem may be considered as a discrete version of P-model first introduced by Kataoka [4].First it is transformed into its deterministic equivalent problem P. Then, an auxiliary problem P(R) with a positive parameter R is defined. After clarifying close relations between P and P(R), this paper proposes a polynomial order algorithm fully utilizing P(R). Finally, more improvement of the algorithm and applicability of this type algorithm to other discrete stochastic programming problems are discussed.  相似文献   

11.
This paper deals with an interior electromagnetic casting (free boundary) problem. We begin by showing that the associated shape optimization problem has a solution which is of class C 2. Then, using the shape derivative and the maximum principle, we give a sufficient condition that the minimum obtained solves our problem.  相似文献   

12.
This paper considers a distributed optimization problem encountered in a time-varying multi-agent network, where each agent has local access to its convex objective function, and cooperatively minimizes a sum of convex objective functions of the agents over the network. Based on the mirror descent method, we develop a distributed algorithm by utilizing the subgradient information with stochastic errors. We firstly analyze the effects of stochastic errors on the convergence of the algorithm and then provide an explicit bound on the convergence rate as a function of the error bound and number of iterations. Our results show that the algorithm asymptotically converges to the optimal value of the problem within an error level, when there are stochastic errors in the subgradient evaluations. The proposed algorithm can be viewed as a generalization of the distributed subgradient projection methods since it utilizes more general Bregman divergence instead of the Euclidean squared distance. Finally, some simulation results on a regularized hinge regression problem are presented to illustrate the effectiveness of the algorithm.  相似文献   

13.
New first-order methods are introduced for solving convex optimization problems from a fairly broad class. For composite optimization problems with an inexact stochastic oracle, a stochastic intermediate gradient method is proposed that allows using an arbitrary norm in the space of variables and a prox-function. The mean rate of convergence of this method and the probability of large deviations from this rate are estimated. For problems with a strongly convex objective function, a modification of this method is proposed and its rate of convergence is estimated. The resulting estimates coincide, up to a multiplicative constant, with lower complexity bounds for the class of composite optimization problems with an inexact stochastic oracle and for all usually considered subclasses of this class.  相似文献   

14.
15.
The problem of stochastic optimization for arbitrary objective functions presents a dual challenge. First, one needs to repeatedly estimate the objective function; when no closed-form expression is available, this is only possible through simulation. Second, one has to face the possibility of determining local, rather than global, optima. In this paper, we show how the stochastic comparison approach recently proposed in Ref. 1 for discrete optimization can be used in continuous optimization. We prove that the continuous stochastic comparison algorithm converges to an -neighborhood of the global optimum for any >0. Several applications of this approach to problems with different features are provided and compared to simulated annealing and gradient descent algorithms.This work was supported in part by the National Science Foundation under Grants EID-92-12122 and ECS-88-01912, and by a Grant from United Technologies/Otis Elevator Company.  相似文献   

16.
Zhang  Junyu  Xiao  Lin 《Mathematical Programming》2022,195(1-2):649-691
Mathematical Programming - We consider the problem of minimizing composite functions of the form $$f(g(x))+h(x)$$ , where f and h are convex functions (which can be nonsmooth) and...  相似文献   

17.
Chance constraint is widely used for modeling solution reliability in optimization problems with uncertainty. Due to the difficulties in checking the feasibility of the probabilistic constraint and the non-convexity of the feasible region, chance constrained problems are generally solved through approximations. Joint chance constrained problem enforces that several constraints are satisfied simultaneously and it is more complicated than individual chance constrained problem. This work investigates the tractable robust optimization approximation framework for solving the joint chance constrained problem. Various robust counterpart optimization formulations are derived based on different types of uncertainty set. To improve the quality of robust optimization approximation, a two-layer algorithm is proposed. The inner layer optimizes over the size of the uncertainty set, and the outer layer optimizes over the parameter t which is used for the indicator function upper bounding. Numerical studies demonstrate that the proposed method can lead to solutions close to the true solution of a joint chance constrained problem.  相似文献   

18.
In this paper we are concerned with stochastic optimization problems in the case when the joint probability distribution, associated with random parameters, can be described by means of a Bayesian net. In such a case we suggest that the structured nature of the probability distribution can be exploited for designing efficient gradient estimation algorithm. Such gradient estimates can be used within the general framework of stochastic gradient (quasi-gradient) solution procedures in order to solve complex non-linear stochastic optimization problems. We describe a gradient estimation algorithm and present a case study related to the reliability of semiconductor manufacturing together with numerical experiments.  相似文献   

19.
In this work, we consider the problem of a half space in the context of the theory of generalized thermoelasticity with one relaxation time. Realistically, the boundary conditions of the problem are considered to be stochastic. Laplace transform technique is used to solve the problem. The boundary conditions are considered to be of a type white noise. The inverse transforms are obtained in an approximate manner using asymptotic expansions valid for small values of time. Numerical results are given and represented graphically. Finally, a comparison with the ideal case when the boundary conditions are deterministic is carried out.  相似文献   

20.
In this paper, stochastic programming techniques are adapted and further developed for applications to discrete event systems. We consider cases where the sample path of the system depends discontinuously on control parameters (e.g. modeling of failures, several competing processes), which could make the computation of estimates of the gradient difficult. Methods which use only samples of the performance criterion are developed, in particular finite differences with reduced variance and concurrent approximation and optimization algorithms. Optimization of the stationary behavior is also considered. Results of numerical experiments and convergence results are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号