首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Substrate inhibition is a common phenomenon in enzyme kinetics. We report here for the first time its study by a combination of the electrophoretically mediated microanalysis (EMMA) methodology with a partial filling technique. In this setup, the part of capillary is filled with the buffer best for the enzymatic reaction whereas, the rest of the capillary is filled with the background electrolyte optimal for separation of substrates and products. In the case of haloalkane dehalogenase, a model enzyme selected for this study, the enzymatic reaction was performed in 20 mM glycine buffer (pH 8.6) whereas 20 mM beta-alanine-hydrochloric acid buffer (pH 3.5) was used as a background electrolyte in combination with direct detection at 200 nm. The whole study was performed on poorly soluble brominated substrate--1,2-dibromoethane. As a result it was first necessary to find the compromise between the concentrations of the enzyme and the substrate preserving both the adequate sensitivity of the assay and at the same time the attainable substrate solubility. By means of the developed EMMA methodology we were able to determine the Michaelis constant (K(M)) as well as the substrate inhibition constant (K(SI)). The value of K(M) and K(SI) obtained were 7.7+/-2.5 mM and 1.1+/-0.4 mM, respectively. Observation of the substrate inhibition of haloalkane dehalogenase by 1,2-dibromoethane is in accordance with previous literature data.  相似文献   

2.
Electrophoretically mediated reaction of glycosidases at a nanoliter scale   总被引:1,自引:0,他引:1  
Kanie Y  Kanie O 《Electrophoresis》2003,24(6):1111-1118
We have investigated electrophoretically mediated microanalysis (EMMA) for the assay of a native glyco-enzyme. As a representative of this class of enzyme, beta-glucosidase was selected, and the reaction was analyzed. Our EMMA was based on the plug-plug interaction of enzyme and substrate plugs, which is essential to reduce quantities of materials. Furthermore, we have addressed the problem of incompatibility of the enzymatic reaction and separation of the reactants. As a result, EMMA of native glycosidase was achieved with a reaction volume of approximately 20 nL and the Michaelis constant was estimated according to the Lineweaver-Burk plot. The current method may have advantages over traditional assay methods, especially in terms of the amount of enzyme (ng order) and substrate (pmol order) required for a reaction.  相似文献   

3.
Fan Y  Scriba GK 《Electrophoresis》2010,31(23-24):3874-3880
An electrophoretically mediated microanalysis (EMMA) assay for the human sirtuin SIRT1 has been developed using 9-fluorenylmethoxycarbonyl (Fmoc)-labeled peptides, i.e. Fmoc-KK(Ac)-NH(2), Fmoc-KK(Ac)L-NH(2) and Fmoc-RHKK(Ac)-NH(2), as substrates. The partial filling mode was applied due to the incompatibility between the incubation buffer, pH 8.0, and the BGE that had a pH of 2.7 or 2.3 depending on the analytes. Incubation and subsequent analyte separation were carried out in a 37/30 cm, 50 μm id fused-silica capillary at 37°C. An injection sequence of incubation buffer, enzyme, substrate, enzyme and incubation buffer was selected because the electrophoretic mobility of SIRT1 was not known. The assay was optimized with regard to the length of the injected plugs, the mixing voltage and mixing time as well as the activity (concentration) of SIRT1. The EMMA assay was subsequently applied to the determination of the Michaelis-Menten constants, K(m), and the maximum velocity, V(max), as well as the determination of the inhibitory constants, IC(50), of inhibitors. Data obtained with the in-capillary assay were in accordance with the literature data or an offline SIRT1 assay.  相似文献   

4.
In this work, an electrophoretically mediated microanalysis (EMMA) method with a partial‐filling technique was setup to evaluate the inhibitory potency of novel compounds toward aminopeptidase N (APN). It was necessary to optimize the electrophoretic conditions with respect to the kinetic constraints and for attaining high sensitivity. In our setup, a part of the capillary was filled with the incubation buffer for the enzyme reaction, whereas the rest was filled with a suitable BGE for the separation of substrates and products. To monitor the performance of the newly developed method, the kinetic constants (Km and Vmax) for the catalyzed dissociation of l ‐Leucine‐p‐nitroanilide in the presence of APN as well as the inhibition constant (IC50) of a known competitive inhibitor, that is bestatin, were determined and these results were compared with those obtained by a classical spectrophotometric assay. The developed EMMA method was subsequently applied to the screening of 30 APN inhibitors. Whereas the inhibition potency of these inhibitors (expressed in IC50 values) were significantly underestimated by the EMMA method, the order of the inhibitory potential of these various compounds was found in agreement with the literature.  相似文献   

5.
A method for determining bovine plasma amine oxidase (PAO; EC 1.4.3.6) activity with benzylamine (Bz) as substrate is described. Electrophoretically mediated microanalysis (EMMA) combined with micellar electrokinetic capillary chromatography (MEKC) was used to perform an on-capillary enzymatic reaction and to separate the generated benzaldehyde from the other reaction products. The capillary was only partially filled with the separation solution, since the enzyme was unstable in the presence of the applied surfactant. The initial reaction velocity of the enzyme-catalyzed reaction was estimated from the peak area of the enzyme product, benzaldehyde. An amplification step was introduced by means of an on-capillary incubation of 15 min, in order to accumulate enough reaction product to detect spectrophotometrically at 254 nm. This set-up resulted in a fully automated assay, which can be carried out in less then 35 min. Using the Lineweaver-Burk equation, an average Michaelis constant (K(M)) for PAO was calculated to be 0.74 mM +/- 0.05 mM, which is consistent with previously reported values.  相似文献   

6.
This review describes the existing developments in the use of the capillary electrophoretic microanalytical technique for the in-line study of enzyme reaction, electrophoretically mediated microanalysis (EMMA). The article is divided into a number of parts. After an introduction, the different modes, basic principle, procedure, and some mathematical treatments of EMMA methodology are discussed and illustrated. The applications of EMMA for enzyme assay and for non-enzymatic determination are summarized into two tables. In addition to classical capillary electrophoresis (CE) instrument EMMA, special emphasis is given to a relatively new technique: EMMA on CE microchip. Finally, conclusions are drawn.  相似文献   

7.
The possibility of determining the Michaelis constant of the irreversible deamination of adenosine to inosine by adenosine deaminase, using capillary electrophoresis, was investigated. This paper describes the use of electrophoretically mediated microanalysis (EMMA) as the technique for carrying out the assay. Initial reaction velocities of the enzymatic reaction were estimated from the peak area of inosine, and the Michaelis constant was calculated according to the Lineweaver-Burk equation. The result (Km = 5.3 × 10−5 M ± 8 × 10−6 M) was consistent with previously reported values. Using the present method, a total amount of as few as 1.2 fmole of enzyme and 9.2 ng of substrate were injected in the capillary for the construction of a Michaelis Menten curve (seven concentrations of substrate, each concentration analyzed in triplicate), which is far smaller than the quantities required in conventional methods.  相似文献   

8.
An electrophoretically mediated microanalysis assay (EMMA) for the determination of the stereoselective reduction of l-methionine sulfoxide diastereomers by methionine sulfoxide reductase enzymes was developed using fluorenylmethyloxycarbonyl (Fmoc)-l-methionine sulfoxide as substrate. The separation of the diastereomers of Fmoc-l-methionine sulfoxide and the product Fmoc-l-methionine was achieved in a successive multiple ionic-polymer layer-coated capillary using a 50 mM Tris buffer, pH 8.0, containing 30 mM sodium dodecyl sulfate as background electrolyte and an applied voltage of 25 kV. 4-Aminobenzoic acid was employed as internal standard. An injection sequence of incubation buffer, enzyme, substrate, enzyme, and incubation buffer was selected. The assay was optimized with regard to mixing time and mixing voltage and subsequently applied for the analysis of stereoselective reduction of Fmoc-l-methionine-(S)-sulfoxide by human methionine sulfoxide reductase A and of the Fmoc-l-methionine-(R)-sulfoxide by human methionine sulfoxide reductase B. The Michaelis–Menten constant, K m, and the maximum velocity, v max, were determined. Essentially identical data were determined by the electrophoretically mediated microanalysis assay and the analysis of the samples by CE upon offline incubation. Furthermore, it was shown for the first time that Fmoc-methionine-(R)-sulfoxide is a substrate of human methionine sulfoxide reductase B.
Figure
Stereospecific EMMA for methionine sulfoxide reductase enzymes Methionine sulfoxide [Met(O)] which may be generated via oxidation by reactive oxygen species (ROS) is reduced by methionine sulfoxide reductase (Msr) enzymes in a stereospecific manner. The present assay allows the in-capillary incubation of recombinant human Msr enzymes followed by separation and analysis of the Met(O) diastereomers as well as the product methionine.  相似文献   

9.
Recent developments in the use of capillary electrophoretic techniques for the in-line study of enzyme reactions and derivatization protocols are reviewed. The article is divided into two parts: (i) in-line enzyme reactions and (ii) in-line derivatization. The first part introduces electrophoretically mediated microanalysis (EMMA) and discusses and illustrates the different modes of EMMA. A literature overview is provided, starting from 1996, and the investigated enzymes are classified into two tables based on the mode of engagement (i.e., continuous or transient) of the developed EMMA-based assay. The second part starts with an introduction of the procedures and the nomenclature used in the area of in-line derivatization protocols based on EMMA. Reported derivatization procedures are discussed and classified in tables, according to the functional group that is derivatized.  相似文献   

10.
This paper describes an ultramicro method for achieving enzyme assays. Enzyme saturating concentrations of substrate, coenzyme when appropriate, and running buffer were mixed and used to fill a deactivated fused-silica capillary in a capillary zone electrophoresis apparatus. The enzyme glucose-6-phosphate dehydrogenase was injected by either electrophoresis or siphoning and mixed with the reagents in the capillary by electrophoretic mixing. Enzyme activity was assayed by electrophoresing the product, reduced nicotinamide adenine dinucleotide phosphate, to the detector where it was detected at 340 nm. Under constant potential, the transport velocity of enzyme and the product was generally different. This caused product to be separated from the enzyme after it was formed. Because product formation was much faster than the rate of enzyme-product separation, product accumulated. The amount of accumulated product was inversely related to operating potential. In the extreme case, the operating potential was zero. Zero potential assays were generally carried out by electrophoresing the enzyme partially through the capillary and then switching to zero potential. This capillary was left at zero potential for several minutes to allow additional product to accumulate. After this additional amplification step, potential was again applied and the product transported to the detector. Product formed under constant potential appears as a broad peak with a flat plateau. When the voltage is switched to zero at intermediate migration distance, a peak will be observed on top of this plateau. Either the eight of the plateau or the area of the peak may be used to determine enzyme concentration. The lower limit of detection was 4.6.10(-17) mol of glucose-6-phosphate dehydrogenase.  相似文献   

11.
The use of capillary electrophoresis for the determination of gamma-glutamyltransferase (GGT) activity with gamma-glutamyl-p-nitroanilide (Glu-p-NA) as a substrate was investigated. The reaction velocity was quantified spectrophotometrically by the corrected peak area of the product p-nitroaniline (pNA) at 380 nm. Micelles composed of sodium deoxycholic acid were used in the background electrolyte in order to obtain a baseline separation between the substrate and the product. The presence of the micelles did not influence the enzymatic reaction. The electrophoretic system was used, not only for the separation and quantitation of the different reaction compounds but also for the in-capillary mixing of the enzyme and substrate plugs. This methodology is known as electrophoretically mediated microanalysis (EMMA). With the developed in-capillary activity assay an average Michaelis constant (K(M)) for GGT was calculated to be 2.09 mM (RSD = 7.3%, n = 3), a value consistent with previously reported values.  相似文献   

12.
This paper demonstrates development of electrophoretically mediated micro analysis (EMMA), for screening protein tyrosine phosphatase (PTP) inhibitors in natural extracts. It is demonstrated that capillary electrophoresis (CE) separation of the substrate and the product allows for using the assay in an on-column format to monitor the reaction without typically used fluorogenic substrates. Michaelis-Menten kinetics parameters calculated based on the EMMA results (Km = 1.2-1.5 microM) were in a good agreement (Km = 1.0-1.5 microM) obtained using an off-line CE functional assay (CE FA). EMMA of PTP titrated with different concentrations of ligand demonstrated the peak-shift phenomenon normally seen in affinity capillary electrophoresis. This feature of EMMA gives an indication of the binding affinity of the ligand in addition to its functional activity, providing another dimension in characterization of the protein-inhibitor interaction. It was demonstrated that simultaneous screening of the primary PTP target and a secondary, counter target (PTP-C) using the EMMA format can be used to prioritize hits based on their specificity.  相似文献   

13.
A novel, stable and highly sensitive non-enzymatic glucose (Glc) sensor was developed using vertically well-aligned multi-walled carbon nanotubes array (MWCNTs) incorporated with cupric oxide (CuO) nanoparticles. The MWCNTs array was prepared by catalytic chemical vapor deposition on a tantalum (Ta) substrate, while a simple and rapid two-step electrodeposition technique was used to prepare the CuO-MWCNTs nanocomposite. First, Cu nanoparticles were deposited onto MWCNTs at constant potential and then they were oxidized into CuO by potential cycling. The electrocatalytic activity of CuO-MWCNTs array was investigated for Glc under alkaline conditions using cyclic voltammetry and chronoamperometry. The sensor exhibited a linear response up to 3 mM of Glc and sensitivity of 2190 μA mM−1 cm−2, which is two to three orders of magnitude higher than that of most non-enzymatic Glc sensors reported in the literature. The sensor response time is less than 2 s and detection limit is 800 nM (at signal/noise = 3). When tested with human blood serum samples, the sensor exhibited high electrocatalytic activity, stability, fast response and good selectivity against common interfering species, suggesting its potential to be developed as a non-enzymatic Glc sensor.  相似文献   

14.
For redox enzymes, the technique called protein film voltammetry makes it possible to determine the entire profile of activity against driving force by having the enzyme exchanging directly electrons with the rotating-disc electrode onto which it is adsorbed. Both the potential location of the catalytic response and its detailed shape report on the sequence of catalytic events, electron transfers and chemical steps, but the models that have been used so far to decipher this signal lack generality. For example, it was often proposed that substrate binding to multiple redox states of the active site may explain that turnover is greater in a certain window of electrode potential, but no fully analytical treatment has been given. Here, we derive (i) the general current equation for the case of reversible substrate binding to any redox states of a two-electron active site (as exemplified by flavins and Mo cofactors), (ii) the quantitative conditions for an extremum in activity to occur, and (iii) the expressions from which the substrate-concentration dependence of the catalytic potential can be interpreted to learn about the kinetics of substrate binding and how this affects the reduction potential of the active site. Not only does slow substrate binding and release make the catalytic wave shape highly complex, but we also show that it can have important consequences which will escape detection in traditional experiments: the position of the wave (this is the driving force that is required to elicit catalysis) departs from the reduction potential of the active site even at the lowest substrate concentration, and this deviation may be large if substrate binding is irreversible. This occurs in the reductive half-cycle of periplasmic nitrate reductase where irreversibility lowers the driving force required to reduce the active site under turnover conditions and favors intramolecular electron transfer from the proximal [4Fe4S]+ cluster to the active site Mo(V).  相似文献   

15.
An electrophoretically mediated microanalysis (EMMA) method for screening neuraminidase inhibitors in depolymerized glycosaminoglycan and natural extracts is described. In the present method, enzyme and substrate were individually introduced into the capillary as distinct plugs, and then mixed for a short time. Afterwards the voltage was reapplied to separate the product from the unreacted substrate and the natural extract. The measured peak area of the product at 214 nm represents the enzyme activity. The electrophoretic conditions for the enzyme reaction and separation of substrate and product were optimized in this study. Under the optimal conditions, the Michaelis–Menten constant and the inhibitive mechanism of zanamivir were studied, which agreed with the literature data. Furthermore, the inhibitory ratios of enzymatic activity of depolymerized glycosaminoglycan and traditional Chinese drugs were determined. The EMMA method has superiority over traditional assay methods, in not only minimizing the false-positive results but also in simplifying the experimental procedure. Therefore, it could be employed to screen inhibitors from natural sources.  相似文献   

16.
Electrophoretically mediated microanalysis (EMMA) was applied for the study of the kinetic parameters of the enzymatic reaction of phenol sulfotransferase SULT1A1 isoenzyme with 4-nitrophenol as a substrate. The SULT1A1 activity was determined by the quantitation of the product, 4-nitrophenyl sulfate, at 274 nm by using different injection and separation steps. This new approach solved the problem of the presence of the very strong inhibitor, adenosine 3',5'-bisphosphate (PAP), in the co-substrate solution (adenosine 3'-phosphate 5'-phosphosulfate, PAPS) which is unstable at room temperature. The inhibitor PAP was electrophoretically separated from the co-substrate PAPS before the injection of enzyme and substrate inside the capillary (and thus before their in-capillary encountering). With the developed in-capillary SULT1A1 activity assay an average Michaelis constant (Km) for 4-nitrophenol was calculated to be 0.84 microM, a value which is consistent with a previously reported value. Strong substrate inhibition (above a 4-nitrophenol concentration of 2.5 microM) was observed, and this is also in accordance with literature values.  相似文献   

17.
The enzymatic activity of diaphorase (Dp) immobilized on a solid substrate was characterized using a scanning electrochemical microscope (SECM) with shear force feedback to control the substrate-probe distance. The shear force between the substrate and the probe was monitored with a tuning fork-type quartz crystal and used as the feedback control to set the microelectrode probe close to the substrate surface. The sensitivity and the contrast of the SECM image were improved in the constant distance mode (distance, 50 nm) with the shear force feedback compared to the image in the constant height mode without the feedback. By using this system, the SECM and topographic images of the immobilized diaphorase were simultaneously measured. The microelectrode tip used in this study was ground aslant like a syringe needle in order to obtain the shaper topographic images. This shape was also effective for avoiding the interference during the diffusion of the enzyme substrates.  相似文献   

18.
Tang ZM  Wang ZY  Kang JW 《Electrophoresis》2007,28(3):360-365
An electrophoretically mediated microanalysis (EMMA) method for screening acetylcholinesterase (AChE) inhibitors in natural extracts is described. In this method, solutions of AChE and the mixture of the substrate and the natural extract were successively injected into the capillary, and mixed electrophoretically by applying a voltage for a short time. Afterwards the voltage was reapplied to separate the product from the unreacted substrate and the natural extract. The measured peak area of the product at UV 230 nm represents the enzyme activity. Since the extract is mixed with the substrate, there is no need to separate the components before testing the inhibition. The inhibitory activity of the natural extract as a whole can be easily found if the peak area of the product is reduced. This makes the present method suitable for screening inhibitors in complex mixtures, such as natural extracts. Compared to the commonly used spectrometric method for screening of AChE inhibitors, the major advantage of the present method is the elimination of Ellman reagent, which is essential for the spectrometric method. This not only simplifies the experimental procedure but also minimizes false-positive results. Moreover, it is an obvious advantage of combining the separation power with the on-column enzyme assay for further investigating which compound(s) is/are responsible for the inhibition. The method was validated using a commercially available AChE inhibitor tacrine and a small chemical library containing four AChE inhibitors and 32 natural extracts. Inhibitors in natural extracts were identified with the present method.  相似文献   

19.
A mathematical model of amperometric biosensors in which chemical amplification by cyclic substrate conversion takes place in a single enzyme membrane has been developed. The model involves three regions: the enzyme layer where enzyme reaction as well as mass transport by diffusion takes place, a diffusion limiting region where only the diffusion takes place, and a convective region where the analyte concentration is maintained constant. Using computer simulation the influence of the thicknesses of the enzyme layer and the diffusion region on the biosensor response was investigated. This paper deals with conditions when the mass transport in the exterior region may be neglected to simulate the biosensor response in a well-stirred solution. The digital simulation was carried out using the finite difference technique.  相似文献   

20.
Electrophoretically mediated microanalysis (EMMA), in combination with a partial filling technique and indirect or direct detection, is described for the study of enzymes reacting with the high mobility inorganic or organic anions as substrates or products. Part of the capillary is filled with a buffer optimized for the enzymatic reaction, the rest of the capillary with the background electrolyte being optimal for the separation of substrates and products. With haloalkane dehalogenase, chosen as a model enzyme, the enzymatic reaction was performed in a 20 mM glycine buffer (pH 8.6). Because of the wide substrate specificity of this enzyme, utilizing chlorinated as well as brominated substrates and producing either nonabsorbing chloride or absorbing bromide ions, two different background electrolytes and detection approaches were adopted. A 10 mM chromate-0.1 mM cetyltrimethylammonium bromide background electrolyte (pH 9.2) was used in combination with indirect detection and 20 mM beta-alanine-hydrochloric acid (pH 3.5) in combination with direct detection. The Michaelis constant (K(m)) of haloalkane dehalogenase for 1-bromobutane was determined. The K(m) values 0.59 mM estimated by means of indirect detection method and 0.17 mM by means of direct detection method were comparable with the value 0.13 mM estimated previously by gas chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号