首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Application of matrix‐assisted laser‐desorption/ionization mass spectrometry (MALDI MS) to analysis and characterization of phosphopeptides in peptide mixtures may have a limitation, because of the lower ionizing efficiency of phosphopeptides than nonphosphorylated peptides in MALDI MS. In this work, a binary matrix that consists of two conventional matrices of 3‐hydroxypicolinic acid (3‐HPA) and α‐cyano‐4‐hydroxycinnamic acid (CCA) was tested for phosphopeptide analysis. 3‐HPA and CCA were found to be hot matrices, and 3‐HPA not as good as CCA and 2,5‐dihydroxybenzoic acid (DHB) for peptide analysis. However, the presence of 3‐HPA in the CCA solution with a volume ratio of 1:1 could significantly enhance ion signals for phosphopeptides in both positive‐ion and negative‐ion detection modes compared with the use of pure CCA or DHB, the most common phosphopeptide matrices. Higher signal intensities of phosphopeptides could be obtained with lower laser power using the binary matrix. Neutral loss of the phosphate group (?80 Da) and phosphoric acid (?98 Da) from the phosphorylated‐residue‐containing peptide ions with the binary matrix was decreased compared with CCA alone. In addition, since the crystal shape prepared with the binary matrix was more homogeneous than that prepared with DHB, searching for ‘sweet’ spots can be avoided. The sensitivity to detect singly or doubly phosphorylated peptides in peptide mixtures was higher than that obtained with pure CCA and as good as that obtained using DHB. We also used the binary matrix to detect the in‐solution tryptic digest of the crude casein extracted from commercially available low fat milk sample, and found six phosphopeptides to match the digestion products of casein, based on mass‐to‐charge values and LIFT TOF‐TOF spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
The dependence of the number of desorbed particles on laser fluence has been investigated for matrix-assisted laser desorption/ionization (MALDI) of analyte and matrix ions as well as for (photoionized) neutral matrix molecules using a homogeneous “flat-top” laser profile. Laser spot diameters ranging from 10 to 200 μm in size have been used. 2,5-Dihydroxybenzoic acid (DHB) and 3,5-dimethoxy-4-hydroxycinnamic acid (sinapic acid) have been tested as matrices. The threshold (for ion detection) is higher and the dependence of the ion signal upon higher-than-threshold fluences is stronger for directly desorbed ions than for photoionized neutral molecules. Directly desorbed analyte ions exhibit the same dependence on fluence as the matrix ions with only minor differences between the two matrices tested, so both have approximately the same detection threshold. For both ions and photoionized neutral molecules, the fluence threshold increases with decreasing spot size while the slope of the intensity/fluence curves decreases. A quasi-thermal, sublimation/desportion model was found to describe the experimental results with excellent precision. For a complete explanation, non-equilibrium effects had to be taken into account.  相似文献   

3.
Direct two-photon ionization of the matrix has been considered a likely primary ionization mechanism in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. This mechanism requires that the vertical ionization threshold of matrix materials be below twice the laser photon energy. Because dimers and larger aggregates may be numerous in the early stages of the MALDI plume expansion, their ionization thresholds are important as well. We have used two-color two-photon ionization to determine the ionization thresholds of jet cooled clusters of an important matrix, 2,5-dihydroxy benzoic acid (DHB), and mixed clusters with the thermal decomposition product of DHB, hydroquinone. The thresholds of the clusters were reduced by only a few tenths of an eV compared to the monomers, to an apparent limit of 7.82 eV for pure DHB clusters. None of the investigated clusters can be directly ionized by two nitrogen laser photons (7.36 eV), and the ionization efficiency at the thresholds is low.  相似文献   

4.
We gauged the internal energy transfer for two dissociative ion decomposition channels in matrix-assisted laser desorption ionization (MALDI) using the benzyltriphenylphosphonium (BTP) thermometer ion [PhCH 2PPh 3] (+). Common MALDI matrixes [alpha-cyano-4-hydroxycinnamic acid (CHCA), 3,5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid, SA), and 2,5-dihydroxycinnamic acid (DHB)] were studied with nitrogen laser (4 ns pulse length) and mode-locked 3 x omega Nd:YAG laser (22 ps pulse length) excitation. Despite the higher fluence required to initiate fragmentation, BTP ions indicated lower internal energy transfer with the picosecond laser in all three matrixes. These differences can be rationalized in terms of phase explosion induced by the nanosecond laser vs a stress-confinement-driven desorption mechanism for the picosecond laser. For the two ion production channels of the BTP thermometer ion, breaking a single bond can result in the formation of benzyl/tropylium ions, F1, or triphenylphosphine ions, F2. In SA and DHB, as well as in CHCA at low fluence levels, the efficiency of these channels (expressed by the branching ratio I F1/ I F2) is moderately in favor of producing tropylium ions, 1 < I F1/ I F2 < 6. As the laser fluence is increased, for CHCA, there is a dramatic shift in favor of the tropylium ion production, with I F1/ I F2 approximately 30 for the nanosecond and the picosecond laser, respectively. This change is correlated with the sudden increase in the BTP internal energies in CHCA in the same laser fluence range. The large changes observed in internal energy deposition for CHCA with laser fluence can account for its ability to induce fragmentation in peptides more readily than SA and DHB.  相似文献   

5.
We describe experiments in MALDI-TOF and MALDI-TOF-TOF showing that the ejection of protein-matrix cluster ions and their partial decay in the source occur in MALDI. The use of radial beam deflection and small size detector in linear mode allows detection of ions with higher time-of-flight and kinetic energy deficit. MALDI-TOF-TOF experiments were carried out by selecting chemical noise ions at m/z higher than that of a free peptide ion. Whatever the selected m/z (up to m/z 300) the molecular peptide ion appeared as the main fragment. The production of protein-matrix clusters and their partial decay in the source was found to increase with the size of the protein (MW from 1000 to 150,000 u), although it decreases with increasing charge state. These effects were observed for different matrices (HCCA and SA) and in a large laser fluence range. Experimental results and calculation highlight that a continuous decay of protein-matrix cluster ions occurs in the source. This decay-desolvation process can account for the high-mass tailing and peak shifting as well as the strong noise/background in the mass spectra of proteins.  相似文献   

6.
Intracluster proton transfer from the matrix-assisted laser desorption/ionization matrix 2,5-dihydroxybenzoic acid (DHB) to the peptide valyl-prolyl-leucine has been investigated as a function of excitation laser wavelength and power. Ionization laser power studies at 308 nm indicate that cluster ionization occurs with a two-photon dependence, whereas matrix-to-analyte proton transfer and cluster dissociation requires an additional photon. At 266 nm, two-photon absorption leads to both cluster ionization and cluster dissociation/proton transfer. A consideration of these results clearly indicates that analyte protonation occurs following ionization of the cluster to produce a radical cation matrix/analyte cluster. Mass spectral features also indicate that mixed DHB/peptide cluster ionization can occur via two-photon ionization at wavelengths as long as 355 nm. These results suggest a reduction in the ionization potential of larger mixed DHB/peptide clusters of greater than 1 eV. The reduced ionization potential seen in these clusters suggests that radical cation initiated proton transfer remains a viable mechanism for analyte protonation in matrix-assisted laser desorption/ionization at these longer wavelengths.  相似文献   

7.
In this paper, we report the measurement of the degree of analyte fragmentation in AP-MALDI as a function of the matrix and of the laser fluence. The analytes include p-OCH3-benzylpyridinium, three peptides containing the sequence EEPP (which cleave very efficiently at the E-P site), and three deoxynucleosides (dA, dG, and dC), which lose the neutral sugar to give the protonated base. We found that the matrix hardness/softness was consistent when comparing the analytes, with a consensus ranking from hardest to softest: CHCA > DHB > SA approximately THAP > ATT > HPA. However, the exact ranking can be fluence-dependent, for example between ATT and HPA. Our goal here was to provide the scientific community with a detailed dataset that can be used to compare with theoretical predictions. We tried to correlate the consensus ranking with different matrix properties: sublimation or decomposition temperature (determined using thermogravimetry), analyte initial velocity, and matrix proton affinity. The best correlation was found with the matrix proton affinity.  相似文献   

8.
The use of collision-induced dissociation, postsource decay (CID-PSD) matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of small organic molecules is demonstrated. Three pesticides: paraquat, diquat, and difenzoquat were chosen for this study. The matrices 2,5-dihydroxybenzoic acid (DHB), alpha-cyano-4-hydroxycinnamic acid (alpha-CHCA), and sinapinic acid (SA) were selected to investigate the effect of the matrix on the CID-PSD MALDI spectra of these molecules. Alpha-CHCA and DHB were found to be appropriate matrices for the pesticides studied. Spectra for a given pesticide obtained from different matrices were compared with each other, and the differences between them are discussed. A comparison of CID-PSD MALDI with fast-atom bombardment MS/MS spectra is presented; the agreement of pesticide fragmentation patterns between the two methods indicates that CID-PSD MALDI MS is a reliable and efficient technique for structural elucidation of small molecules.  相似文献   

9.
2,5-Dihydroxybenzoic acid (DHB) has been demonstrated to be a more suitable matrix than 3,5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid, SA) to obtain reliable molecular mass values of intact glycoproteins because it prevents sugar fragmentation. Lack of spot homogeneity during the crystallization step was prevented by drying the sample-matrix mixture under vacuum conditions. Nevertheless, this sample-matrix preparation procedure requires a specific experimental setup and may be time-consuming. In this work, we investigated the effectiveness of different ionic liquid matrices (ILMs) with SA and DHB on the ionization of a set of intact glycoproteins with several degrees of glycosylation. The obtained results demonstrate that some of the tested ILMs allow detection of the studied intact glycoproteins. Furthermore, the selected optimum conditions solve the reproducibility issue of using the DHB as a solid matrix without the vacuum drying method and, surprisingly, avoid sugar fragmentation when both SA and DHB were used as ILMs.  相似文献   

10.
Since introduction of sinapinic acid (SA) and α‐cyano‐4‐hydroxycinnamic acid as matrices, successful application of matrix‐assisted laser desorption/ionization mass spectrometry started for protein/polypeptides. Both show some limitations in short peptide analysis because matrix clusters are quite abundant. Cinnamics currently used are E‐cinnamics. Here, Z‐SA as matrix for peptides is studied and compared with E‐SA and α‐cyano‐4‐hydroxycinnamic acid. Minor number of clusters is always observed in the low m/z region allowing the detection of short peptides. The results here described show that this novel matrix is a tool of choice for direct, rapid and sensitive detection of hydrophilic and hydrophobic peptides. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
Both the matrix selected and the laser fluence play important roles in MALDI-quadrupole/time of flight (QqTOF) fragmentation processes. "Hot" matrices, such as alpha-cyano4-hydroxycinnamic acid (HCCA), can increase fragmentation in MS spectra. Higher laser fluence also increases fragmentation. Typical peptide fragment ions observed in the QqTOF are a, b, and y ion series, which resemble low-energy CID product ions. This fragmentation may occur in the high-pressure region before the first mass-analyzing quadrupole. Fragment ions can be selected by the first quadrupole (Q1), and further sequenced by conventional MS/MS. This allows pseudo-MS3 experiments to be performed. For peptides of higher molecular weight, pseudo-MS3 can extend the mass range beyond what is usually accessible for sequencing, by allowing one to sequence a fragment ion of lower molecular weight instead of the full-length peptide. Peptides that predominantly show a single product ion after MS/MS yield improved sequence information when this technique is applied. This method was applied to the analysis of an in vitro phosphorylated peptide, where the intact enzymatically-generated peptide showed poor dissociation via MS/MS. Sequencing a fragment ion from the phosphopeptide enabled the phosphorylation site to be unambiguously determined.  相似文献   

12.
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a powerful tool for the analysis and characterization of protein phosphorylation on the peptide level. In this study, the applicability of ionic liquid matrices (ILM) formed by combination of the crystalline MALDI matrix 2,5-dihydroxybenzoic acid (DHB) with pyridine or n-butylamine was tested for the analysis of phosphopeptides. Low ionization efficiency in both positive and negative ion mode was observed in acid-free sample preparations. Upon addition of 0.1% trifluoroacetic acid (TFA), ion formation was increased, but analogously to the situation described earlier for pure DHB, best results were obtained upon use of 1% phosphoric acid as matrix additive. The samples prepared in this way were significantly more homogeneous than preparations with pure DHB, thus avoiding the need for time-consuming search for hot spots. Other characteristics like metastable fragmentation of phosphopeptides did not differ from that observed in classical preparations. The limits of detection for synthetic phosphopeptides and singly or multiply phosphorylated peptides from tryptic digests of alpha- and beta-casein were comparable with those obtained when using pure DHB; in some cases even higher signal intensities could be observed in the ILM. The use of ILM in combination with 1% phosphoric acid as matrix additive significantly facilitates analysis of phosphopeptides by MALDI-MS.  相似文献   

13.
For matrix‐assisted laser desorption/ionization (MALDI) mass spectra, undesirable ion contamination can occur due to the direct laser excitation of substrate materials (i.e., laser desorption/ionization (LDI)) if the samples do not completely cover the substrate surfaces. In this study, comparison is made of LDI processes on substrates of indium and silver, which easily emit their own ions upon laser irradiation, and conventional materials, stainless steel and gold. A simultaneous decrease of ion intensities with the number of laser pulses is observed as a common feature. By the application of an indium substrate to the MALDI mass spectrometry of alkali salts and alkylammonium salts mixed with matrices, 2,5‐dihydroxybenzoic acid (DHB) or N‐(4‐methoxybenzylidene)‐4‐butylaniline (MBBA), the mixing of LDI processes can be detected by the presence of indium ions in the mass spectra. This method has also been found to be useful for investigating the intrinsic properties of the MALDI matrices: DHB samples show an increase in the abundance of fragment ions of matrix molecules and cesium ions with the number of laser pulses irradiating the same sample spot; MBBA samples reveal a decrease in the level of background noise with an increase in the thickness of the sample layer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The dependence of the signal intensity of analyte and matrix ions on laser fluence was investigated for infrared matrix-assisted laser desorption/ionization (IR-MALDI) mass spectrometry using a flat-top laser beam profile. The beam of an Er : YAG laser (wavelength, 2.94 microm; pulse width, 90 ns) was coupled into a sapphire fiber and the homogeneously illuminated end surface of the fiber imaged on to the sample by a telescope. Three different laser spot sizes of 175, 350 and 700 microm diameter were realized. Threshold fluences of common IR matrices were determined to range from about 1000 to a few thousand J m(-2), depending on the matrix and the size of the irradiated area. In the MALDI-typical fluence range, above the detection threshold ion signals increase strongly with fluence for all matrices, with a dependence similar to that for UV-MALDI. Despite the strongly different absorption coefficients of the tested matrices, varying by more than an order of magnitude at the excitation laser wavelength, threshold fluences for equal spot sizes were found to be comparable within a factor of two. With the additional dependence of fluence on spot size, the deposited energy per volume of matrix at threshold fluence ranged from about 1 kJ mol(-1) for succinic acid to about 100 kJ mol(-1) for glycerol.  相似文献   

15.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) was applied to the analysis of Ru(OCOCF(3))(2)(CO)(PPh(3))(2), Ru(OCOC(3)F(7))(2)(CO)(PPh(3))(2), Ir(tBuppy)(3) and Ir(ppy)(2)(acac) complexes. A troublesome problem in the MALDI-TOFMS characterization of these metal complexes is the possible replacement of complex ligands by matrix. In this contribution, 10 matrices, ranging from acidic to basic, were investigated: alpha-cyano-4-hydroxycinnamic acid (CHCA), 2,5-dihydroxybenzoic acid (DHB), sinapinic acid (SA), dithranol, 2,4,6-trihydroxyactophenone (THAP), 6-azo-2-thiothymine (ATT), norharman, 2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene]malononitrile (DCTB), 4-nitroaniline (NA) and 2-amino-5-nitrophyridine (ANP). With most of the matrices, including the neutral and basic ones, matrix substitution of ligand could clearly be detected. Based on the experimental results, possible mechanisms of matrix substitution were discussed. It was demonstrated that the ligand exchange process might also occur through the gas-phase reactions initiated by laser shots. Among the matrices tested, DCTB was found to be the best one for the complexes that are prone to ligand exchange by matrix.  相似文献   

16.
We introduce a two-component matrix for ultraviolet matrix-assisted laser desorption/ionization mass spectrometry (UV-MALDI-MS) that consists of 2,5-dihydroxybenzoic acid (DHB) and glycerol. Upon slow evaporation of residual water/methanol solvents in a pre-vacuum chamber sample preparations are obtained that exhibit a homogeneous morphology with analyte-matrix crystals evenly distributed over the whole sample spot. At a molar DHB/glycerol ratio of approximately 1:5, the crystals range in length from approximately 100 to 300 microm and are about 15-30 microm wide. Mass spectra of peptides, proteins, and an oligosaccharide are presented and compared with those recorded from standard dried-droplet DHB matrix. The ion signals show a reproducibility of the order of 10-15% when scanning the surface of an individual sample or even different samples that contain the same amount of peptide, A close to linear relationship between peptide concentration and the corresponding peptide ion signal is found over three orders of magnitude of sample prepared. However, when a fixed position is irradiated with a large number of laser pulses, a monotonous decay of peptide ion signal with time is observed. Potentially, the binary matrix will be especially useful for the analysis of samples that are stabilized in buffered aqueous glycerol solution and preliminary results addressing this aspect are shown.  相似文献   

17.
Large signals from alpha-cyano-4-hydroxycinnamic acid (CHCA) matrix complexes with sodium and potassium ions were found to interfere with sensitive matrix-assisted laser desorption/ionization (MALDI) analysis of a hydrochloric acid digest of gelatine preparations. The nature of some selected matrix clusters was investigated by conventional post-source decay and LIFT-TOF/TOF experiments. The matrix clusters fragmented readily by neutral evaporation to give smaller sized matrix cluster species without matrix disintegration. Their characterization distinguished them from peptide signals, in particular from those that had the same nominal mass and differed only in the fractional part of the mass as encountered for gelatine-derived peptides. Knowledge of the molecular composition of these cluster species allowed using them for internal calibration of the MALDI mass spectra. The hydrolytic peptides could be analyzed with increased sensitivity when using 2,5-dihydroxy benzoic acid (DHB) as the MALDI matrix.  相似文献   

18.
Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) is an excellent analytical technique for rapid analysis of a variety of molecules with straightforward sample pretreatment. The performance of MALDI‐TOF MS is largely dependent on matrix type, and the development of novel MALDI matrices has aroused wide interest. Herein, we devoted to seek more robust MALDI matrix for herbal saponins than previous reported, and ginsenoside Rb1, Re, and notoginsenoside R1 were used as model saponins. At the beginning of the present study, 2,5‐dihydroxybenzoic acid (DHB) was found to provide the highest intensity for saponins in four conventional MALDI matrices, yet the heterogeneous cocrystallization of DHB with analytes made signal acquisition somewhat “hit and miss.” Then, graphene oxide (GO) was proposed as an auxiliary matrix to improve the uniformity of DHB crystallization due to its monolayer structure and good dispersion, which could result in much better shot‐to‐shot and spot‐to‐spot reproducibility of saponin analysis. The satisfactory precision further demonstrated that minute quantities of GO (0.1 μg/spot) could greatly reduce the risk of instrument contamination caused by GO detachment from the MALDI target plate under vacuum. More importantly, the sensitivity and linearity of the standard curve for saponins were improved markedly by DHB‐GO composite matrix. Finally, the application of detecting the Rb1 in complex biological sample was exploited in rat plasma and proved it applicable for pharmacokinetic study quickly. This work not only opens a new field for applications of DHB‐GO in herbal saponin analysis but also offers new ideas for the development of composite matrices to improve MALDI MS performance.  相似文献   

19.
To enhance sample signals and improve homogeneity in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) analysis, a simple, rapid, and efficient sample preparation method was developed in this study. Polydimethylsiloxane (PDMS) was coated on a stainless steel MALDI plate, forming a transparent, hydrophobic surface that enhanced sample signals without producing observable background signals. Compared to the use of an unmodified commercial metal MALDI plate, peptide signals were enhanced by ~7.1–11.0-fold due to the reduced sample spot area of the PDMS-coated plate, and showed improved peptide mass fingerprinting (PMF) and MS/MS peptide sequencing results. In the analysis of phosphopeptides and carbohydrates with a 2,5-dihydroxybenzoic acid (DHB) matrix, the PDMS-coated plate showed improved sample homogeneity and signal enhancements of ~5.2–8.2-fold and ~2.8–3.2-fold, respectively. Improved sensitivity in the observation of more unique fragment ions by MS/MS analysis, to successfully distinguish isomeric carbohydrates, was also illustrated. In protein analysis with a sinapinic acid (SA) matrix, a ~3.4-fold signal enhancement was observed. The PDMS film coating was easily removed and refabricated to avoid sample carryover, and was applicable to diverse commercial MALDI plates. The PDMS-coated approach is a simple, practical, and attractive method for enhancing analyte signals and homogeneity.  相似文献   

20.
将几种香豆素类新基质(香豆素、3-羟基香豆素(3-HC)、3-氨基香豆素(3-AC)、3-羧基香豆素(3-CC)和4-甲基-7-羟基香豆素(4-M-7-HC))分别应用于基质辅助激光解吸/电离飞行时间质谱(MALDI TOF-MS)测定葡聚糖和3种糖蛋白的研究.香豆素和3-羟基香豆素分别与2,5-二羟基苯甲酸(DHB)混合组成2种二元基质,极大地改善了基质和葡聚糖样品的共结晶状况,样品分布更加均匀.葡聚糖样品更易解吸/电离,每个激光点照射样品均能产生较强的质谱信号,且谱图重现性更好,得到了理想的MALDI TOF-MS谱图.当香豆素类基质用于分析糖蛋白时:3-HC和4-M-7-HC是测定糖蛋白A的优异基质,能检测到m/z 为66 672 Da 的离子信号.而3-AC测定糖蛋白B的基质效果比糖类分析常用基质2,5-二羟基苯甲酸更好.因此,这些香豆素类化合物将为MALDI TOF-MS分析多糖和糖蛋白提供更多新基质选择.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号