首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Giant magnetostrictive SmFe2/Fe exchange-coupled multilayers were fabricated by ion beam sputtering deposition on glass substrates. The effects of SmFe2/Fe exchange coupling action and vacuum annealing on soft-magnetic property and static-dynamic magnetostrictive characteristics of SmFe2/Fe multilayers were investigated. The results showed that the soft-magnetic, static-dynamic magnetostrictive characteristics were greatly improved by SmFe2/Fe exchange coupling action and proper vacuum annealing treatment temperature. Compared with that of SmFe2 single film, the coercivity in the direction of easy magnetization axis for SmFe2/Fe exchange-coupled multilayers exhibited a greater decrease. Better soft-magnetic properties were achieved (Hc=2.54 kA/m, Ms=120.38 emu/g, and Mr/Ms=0.21) after vacuum annealing at certain temperature. The magnetostrictive coefficient for SmFe2/Fe exchange-coupled multilayers was about 135 ppm at 16 kA/m magnetic field. At first order resonant frequency (99.2 Hz), the amplitude peak-peak value for the as-deposited SmFe2/Fe exchange-coupled multilayers was 46 μm. After the vacuum annealing treatment at 250 °C, the amplitude peak-peak value increased to 650 μm.  相似文献   

2.
The magnetic properties of amorphous and nanocrystalline hard magnetic materials are summarized. The reduction of the “effective” anisotropy field due to exchange coupling in nanocrystalline materials is demonstrated. This leads experimentally as well as theoretically to a remanence enhancement and to a reduced coercivity. Also the domain structure shows the effect of exchange coupling. Nd–Fe–Al is taken as an example of a new “amorphous” hard magnetic material. For magnetostrictive materials the possibility of reducing the anisotropy in nanocrystalline samples without loosening the high magnetostriction is discussed.  相似文献   

3.
Sputtered [Tb0.4(Fe0.55Co0.45)0.6/(Y0.2Fe0.63Co0.17)]40 multilayers were investigated by means of energy-dispersive X-ray spectroscopy, high-resolution transmission electron microscope and SQUID magnetometer measurements. The results show that the amorphous state exists in the whole as-deposited sample. For the sample annealed at 350°C, the amorphous state still remains in the TbFeCo layers, whereas a fine grain (7–10 nm size) structure was formed in the YFeCo ones. Magnetisation analysis indicates the existence of a non-collinear magnetic structure and a field-induced magnetic phase transition, in which the TbFeCo magnetisation tends to rotate along the YFeCo magnetisation direction. The magnetic coercivity is discussed in terms of the magnetoelastic interactions.  相似文献   

4.
We have studied alloying of the nonmagnetic spacer layer with a magnetic material as a method of tuning the interlayer coupling in magnetic multilayers. We have specifically studied the Fe/V(100) system by alloying the spacer V with various amounts of Fe. For some Fe concentrations in the spacer, it is possible to create a competition between antiferromagnetic Ruderman-Kittel-Kasuya-Yoshida exchange and direct ferromagnetic exchange coupling. The exchange coupling and transport properties for a large span of systems with different spacer concentrations and thicknesses were calculated and measured experimentally and good agreement between observations and theory was observed. A reduction in magnetoresistance of about 50% was observed close to the switchover from antiferromagnetic to ferromagnetic coupling.  相似文献   

5.
Magneto-optic Kerr magnetometry and neutron reflectometry reveal that Fe layers exhibit magnetic exchange coupling through LaHx spacer layers. Ferromagnetic and antiferromagnetic coupling is observed on multilayers of these materials depending on the thickness of the hydride layers, but without oscillatory behavior. Starting from metallic La dihydride spacer layers the effect of dissolving increasingly more hydrogen was examined. Sign and value of the coupling depend crucially on the hydrogen content x. The coupling can be inverted from antiferromagnetic to ferromagnetic and vice versa. These alterations are due to modifications of the electronic structure of the hydride. When the hydrogen absorption saturates the hydride layers become insulating and the exchange coupling is likely to disappear. In this final state the multilayers are always characterized by a very soft ferromagnetic rectangular hysteresis curve. Upon removal of the hydrogen to the initial concentration the original magnetic structure is restored.  相似文献   

6.
研究了用射频磁控溅射方法制备的[Co(1.5nm)/V(dV)]20(0.5nm≤dV≤4nm)多层膜的结构和磁性.用X射线衍射、透射电子显微镜、高分辨率透射电子显微镜等手段对其结构的分析,表明它们层状周期结构良好,沿膜的生长方向具有fcc Co(111)和bcc V(110)织构,且是由小的柱状晶粒构成的多晶薄膜.界面一定程度的合金化,使其成为成分调制周期结构,也是它们的一个结构特征.由其铁磁共振谱计算得到较小的g因子和4πMe 关键词:  相似文献   

7.
In magnetic multilayers the oscillatory exchange coupling across nonmagnetic metallic spacer is mediated via correlated spin fluctuations of the conduction electrons. For some metals there is no coupling across spacer while for the other the effective exchange exhibits either one or two oscillation periods. Within Landau-Ginzburg approach we explain the observed behaviour of magnetic coupling.  相似文献   

8.
刘伟  刘雄华  崔伟斌  龚文杰  张志东 《中国物理 B》2013,22(2):27104-027104
Recent advances in the study of exchange couplings in magnetic films are introduced.To provide a comprehensive understanding of exchange coupling,we have designed different bilayers,trilayers and multilayers,such as anisotropic hard/soft-magnetic multilayer films,ferromagnetic/antiferromagnetic/ferromagnetic trilayers,[Pt/Co]/NiFe/NiO heterostructures,Co/NiO and Co/NiO/Fe trilayers on an anodic aluminum oxide(AAO) template.The exchange-coupling interaction between soft-and hard-magnetic phases,interlayer and interfacial exchange couplings and magnetic and magnetotransport properties in these magnetic films have been investigated in detail by adjusting the magnetic anisotropy of ferromagnetic layers and by changing the thickness of the spacer layer,ferromagnetic layer,and antiferromagnetic layer.Some particular physical phenomena have been observed and explained.  相似文献   

9.
The structural, magnetic and transport properties of sputtered Fe/Si multilayers were studied. The analyses of the data of the X-ray diffraction, resistance and magnetic measurements show that heavy atomic interdiffusion between Fe and Si occurs, resulting in multilayers of different complicated structures according to different sublayer thicknesses. The nominal Fe layers in the multilayers generally consist of Fe layers doped with Si, ferromagnetic Fe-Si silicide layers and nonmagnetic Fe-Si silicide interface layers, while the nominal Si spacers turn out to be Fe-Si compound layers with additional amorphous Si sublayers only under the condition either for the series or for the series multilayers. A strong antiferromagnetic (AFM) coupling and negative magnetoresistance (MR) effect, about 1%, were observed only in multilayers with iron silicide spacers and disappeared when -Si layers appear in the spacers. The dependences of MR on and on bilayer numbers N resemble the dependence of AFM coupling. The increase of MR ratio with increasing N is mainly attributed to the improvement of AFM coupling for multilayers with N. The dependence of MR ratio is similar to that in metal/metal system with predominant bulk spin dependent scattering and is fitted by a phenomenological formula for GMR. At 77 K both the MR effect and saturation field increase. All these facts suggest that the mechanisms of the AFM coupling and MR effect in sputtered Fe/Si multilayers are similar to those in metal/metal system. Received: 11 February 1998 / Revised: 9 March 1998 / Accepted: 9 March 1998  相似文献   

10.
A selected review of recent magnetostrictive material investigations is presented. Particular attention is paid to the artificially structured solids-like nanoscale magnetic multilayers and nanosize magnetic alloys. Topics covered also include the magnetoelastic effects in manganates, cobaltates and high-temperature superconductors.  相似文献   

11.
Two series of sputtered Co/V multilayers were investigated by X-ray diffraction, ferromagnetic resonance (FMR) and magnetic measurements. The multilayers are found severely alloyed, resulting in two FMR peaks of uniform mode. Spin-wave resonance (SWR) spectra were observed when the thickness of vanadium is thin, indicating interlayer coupling. The data of SWR were treated approximately respectively by volume inhomogeneity (VI) and volume homogeneity and entire surface pinning (SP) models. The relatively small calculated effective exchange constants showed weak exchange coupling between Co layers across V spacers.  相似文献   

12.
A comprehensive study of the influence of ferromagnetic thickness on the static and dynamic magnetic properties in exchange-biased FeCo/MnIr multilayers for both strong and weak exchange-bias coupling cases is presented. The results demonstrate that static and dynamic magnetic anisotropy fields decrease with ferromagnetic thickness in both cases. The rising of rotational anisotropy is discussed in conjunction with the enhanced coercivity and exchange bias by taking into account the roles of the rotatable and frozen antiferromagnetic spins in each of the two cases. Due to the contributions of the exchange bias and rotational anisotropy, the resonance frequency can be tailored up to 10 GHz. In addition, the behaviors of the frequency linewidth and the effective damping factor are discussed and ascribed to the dispersion of magnetic anisotropy.  相似文献   

13.
14.
We obtain the exact Green's functions of the Anderson s-d mixing model for magnetic multilayers within the mean-field theory of the on-site Coulomb repulsion. It is shown that the coupling oscillates in the experimental range of the spacer thickness only when the s-d mixing is strong enough, and that the polarization energies of s and d electrons weaken the intedayer coupling remarkably. We also find that the thermal dependence is determined by both the properties of the Fermi surface of the spacer and the exchange splitting between the two spin subbands in the ferromagnetic layers.  相似文献   

15.
The effect of the antiferromagnetic IrMn thickness upon the magnetic properties of CoFe/Pt/CoFe/[IrMn(tIrMn)] multilayers is studied. An oscillatory interlayer coupling (IEC) has been shown in pinned CoFe/Pt(tPt)/CoFe/IrMn multilayers with perpendicular anisotropy. The period of oscillation corresponds to about 2 monolayers of Pt. The oscillatory behavior of IEC depends on the nonmagnetic metallic Pt thickness and is thought to be related to the antiferromagnetic ordering induced by the IrMn layer. From the extraordinary Hall voltage amplitude (EHA) curves as function of IrMn thickness, we report that the oscillation dependence of IEC for the [CoFe/Pt/CoFe] multilayer system induced by IrMn with spacer-layer thickness is a important features of perpendicular exchange biased system.  相似文献   

16.
This paper investigates the electronic structure and magnetocrystalline anisotropy of Fe--Ga magnetostrictive material by means of the full potential-linearized augmented plane-wave method within the generalized gradient approximation. The 3d-orbit splitting of Fe atoms in D03, B2-like and L12 crystalline structures of Fe--Ga is calculated with consideration of the crystal field as well as the spin--orbit coupling effect. Because of the frozen orbital angular momenta of the 3d-orbit for Fe atoms in Fe--Ga magnetostrictive alloys and the spin--orbit coupling, the distribution of the electron cloud is not isotropic, which leads to the anisotropy of exchange interaction between the different atoms. A method on estimating the magnetocrystalline anisotropy of Fe--Ga alloys by means of calculating orbit-projected density of states for Fe atoms is performed. The anisotropic distribution of the electron cloud of Fe atoms in these three crystalline structures of Fe--Ga is studied based on the above method showing the highest magnetic anisotropy for B2-like structure. This qualitative method comes closer to physical reality with a vivid physical view, which can evaluate the anisotropy of electron cloud for 3d transition atoms directly. The calculated results are in good agreement with both the previous theoretical computation and the tested value on the magnetic anisotropy constant, which confirms that the electron cloud anisotropy of Fe atoms could well characterize the magnetocrystalline anisotropy of Fe--Ga magnetostrictive material.  相似文献   

17.
In antiferromagnetically coupled multilayers with perpendicular anisotropy unusual multidomain textures can be stabilized due to a close competition between long-range demagnetization fields and short-range interlayer exchange coupling. In particular, the formation and evolution of specific topologically stable planar defects within the antiferromagnetic ground state, i.e. wall-like structures with a ferromagnetic configuration extended over a finite width, explain configurational hysteresis phenomena recently observed in [Co/Pt(Pd)]/Ru and [Co/Pt]/NiO multilayers. Within a phenomenological theory, we have analytically derived the equilibrium sizes of these “ferroband” defects as functions of the antiferromagnetic exchange, a bias magnetic field, and geometrical parameters of the multilayers. In the magnetic phase diagram, the existence region of the ferrobands mediates between the regions of patterns with sharp antiferromagnetic domain walls and regular arrays of ferromagnetic stripes. The theoretical results are supported by magnetic force microscopy images of the remanent states observed in [Co/Pt]/Ru.  相似文献   

18.
The results of development of “giant magnetostrictive” multilayers with spin reorientation transition (SRT) for microactuators are presented. Manifestations of magneto-mechanical instability and nonlinearity near SRT are studied experimentally and simulated numerically. Improvement of magneto-mechanical sensitivity near SRT is demonstrated for various modes of linear and nonlinear actuation of magnetostrictive unimorph. Limitations of sensitivity caused by magnetic field distortions are described by a numerical model, the results are compared with the experimental data.  相似文献   

19.
基于自由电子模型,考虑到不同膜厚和不同磁化排列的费密能的不同,自洽地给出费密能。利用这种方法,计算了材料铁磁层和非磁层电子密度对层间耦合振荡周期的影响,并比较了我们所得结果与他人按巨势法得到的结果的异同,发现振荡周期随着电子密度的变化而改变,并且当铁磁层和非磁层的电子密度不同时,将出现不等周期的振荡。这一新的理论结果与最近的实验相符。此外,还计算了极化强度和由于能带不匹配造成的接触势对耦合强度及振荡相位的影响:前者是决定耦合强度的主要因素,后者则会影响振荡相位,甚至周期。 关键词:  相似文献   

20.
Carbucicchio  M.  Grazzi  C.  Lanotte  L.  Rateo  M.  Ruggiero  G.  Turilli  G. 《Hyperfine Interactions》2002,139(1-4):553-559
Co/Fe multilayers were electron beam evaporated in ultra-high vacuum and analyzed by Alternating Gradient Force Magnetometry, Magnetic Force Microscopy, Conversion Electron Mössbauer Spectroscopy, and Transmission Electron Microscopy. The multilayer of 10 nm Co and 30 nm Fe layer thickness showed a single-phase magnetic behavior because of a strong exchange coupling established between the layers. The system exhibits stripe domains which were correlated to the presence of a perpendicular magnetic anisotropy. The study performed on multilayers where Co was intercalated by very thin 57Fe layers showed that the interfaces were very clean and sharp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号