首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We review several aspects of the propagation of sound in vortical flows. We restrict ourselves to isothermal, humidity-free flows at low Mach number M. Since vorticity plays a major role in vortex-flow interactions we focus on vortical flows. We consider two main canonical situations. The first concerns the transmission of sound. We analyze the evolution of acoustic wavefronts as they propagate across a single vortex. The second situation addresses the scattering of sound waves by nonstationary vortices. We study the evolution of the acoustic pressure emitted in the far field, at an angle with the initial direction of propagation. In this geometry one performs direct spectroscopy of the flow vorticity field. In each case, we review theoretical results and compare with experimental measurements and numerical simulations when available. We also briefly report how the following new acoustic techniques have recently been used to study complex or turbulent flows: time-resolved acoustic spectroscopy, speckle interferometry and Lagrangian particle tracking. PACS 43.25, 43.28, 47.32, 67.40  相似文献   

2.
An inviscid theoretical method that is applicable to non-periodic motions and that accounts for large amplitudes and non-planar wakes (large-angle unsteady thin airfoil theory) is developed. A pitch-up, hold, pitch-down motion for a flat plate at Reynolds number 10,000 is studied using this theoretical method and also using computational (immersed boundary method) and experimental (water tunnel) methods. Results from theory are compared against those from computation and experiment which are also compared with each other. The variation of circulatory and apparent-mass loads as a function of pivot location for this motion is examined. The flow phenomena leading up to leading-edge vortex shedding and the limit of validity of the inviscid theory in the face of vortex-dominated flows are investigated. Also, the effect of pitch amplitude on leading-edge vortex shedding is examined, and two distinctly different vortex-dominated flows are studied using dye flow visualizations from experiment and vorticity plots from computation.  相似文献   

3.
The unsteady motions of an inviscid vortex under the influence of a cylinder pair in the presence of a low Mach number mean flow and the corresponding sound generation are examined in the present study. The two cylinders are in close proximity. A semi-analytical approach using the conformal mapping together with the potential theory is adopted. The results show that the vortex will interact intensively with the cylinders under the right combinations of mean flow direction and initial vortex position. Such interactions result in a high rate of change of vortex propagation velocity, strong fluctuating forces on cylinder and strong sound radiations. However, it is found that much stronger acoustic energy radiation will result when the vortex approaches the cylinder pair from the bottom than from the top, unless the mean flow is nearly perpendicular to the horizontal cylinder pair axis. Stronger sound radiation is also observed for the identical cylinder cases in general, except the flow direction is close to some critical values.  相似文献   

4.
Time-resolved stereo particle-image velocimetry (TR-SPIV) and unsteady pressure measurements are used to analyze the unsteady flow over a supercritical DRA-2303 airfoil in transonic flow. The dynamic shock wave–boundary layer interaction is one of the most essential features of this unsteady flow causing a distinct oscillation of the flow field. Results from wind-tunnel experiments with a variation of the freestream Mach number at Reynolds numbers ranging from 2.55 to 2.79 × 106 are analyzed regarding the origin and nature of the unsteady shock–boundary layer interaction. Therefore, the TR-SPIV results are analyzed for three buffet flows. One flow exhibits a sinusoidal streamwise oscillation of the shock wave only due to an acoustic feedback loop formed by the shock wave and the trailing-edge noise. The other two buffet flows have been intentionally influenced by an artificial acoustic source installed downstream of the test section to investigate the behavior of the interaction to upstream-propagating disturbances generated by a defined source of noise. The results show that such upstream-propagating disturbances could be identified to be responsible for the upstream displacement of the shock wave and that the feedback loop is formed by a pulsating separation of the boundary layer dependent on the shock position and the sound pressure level at the shock position. Thereby, the pulsation of the separation could be determined to be a reaction to the shock motion and not vice versa.  相似文献   

5.
An analysis of the sound produced when a line vortex interacts at low Mach number with forward or backward facing steps is made. The radiation is dominated by an aeroacoustic dipole whose strength is equal to the unsteady drag on the step. The drag is determined by the vorticity distribution, and a correct estimate of the sound must therefore include contributions from vorticity in the separated flow induced by the vortex. The separation is modelled by assuming that the shed vorticity rolls up into a concentrated core, fed by a connecting sheet from the edge of the step of negligible circulation. The motion everywhere is irrotational except at the impinging vortex and the separation core, and the trajectory of the core is governed by an emended Brown & Michael equation. For large steps it is found that estimates of the generated sound that neglect separation are typically an order of magnitude too large. The sound levels predicted for small steps with and without separation are of comparable magnitudes, although the respectivephasesare different.Turbulentflow over a step frequently involves separation and large surface pressure fluctuations at reattachment zones. The results of this paper suggest that numerical schemes for determining the noise generated by turbulent flow over a step must take proper account of “forcing” of the separation region by the impinging turbulence and of vorticity production via the no-slip condition.  相似文献   

6.
This paper addresses nonlinear effects which result from the interaction of shock waves with vortices. A series of experiments are carried out, which involve the interaction of a strong shock wave with a single plane vorticity wave and a randomly distributed wave system. These experiments are first conducted in the linear regime to obtain a mutual verification of theory and computation. They are subsequently extended into the nonlinear regime. A systematic study of the interaction of a plane shock wave and a single vortex is then conducted. Specifically, we investigate the conditions under which nonlinear effects become important, both as a function of shock Mach number, M 1, and incident vortex strength (characterized by its circulation Γ). The shock Mach number is varied from 2 to 8, while the circulation of the vortex is varied from infinitesimally small values (linear theory) to unity. Budgets of vorticity, dilatation, and pressure are obtained. They indicate that nonlinear effects become more significant as both the shock Mach number and the circulation increase. For Mach numbers equal to 5 and above, the dilatation in the vortex core grows quadratically with circulation. An acoustic wave propagates radially outward from the vortex center. As circulation increases, its upstream-facing front steepens at low Mach numbers, and its downstream-facing front steepens at high Mach numbers. A high Mach number asymptotic expansion of the Rankine--Hugoniot conditions reveals that nonlinear effects dominate both the shock motion and the downstream flow for ΓM 1 > 1. Received 28 June 1997 and accepted 25 November 1997  相似文献   

7.
A two-dimensional numerical computation has been made for an unsteady flow in a channel obstructed by an inserted square rod. The results of the computation made for the flow with a parabolic inlet velocity profile at a specific value of channel Reynolds number are analyzed in detail. The obtained results reveal that momentum transfer is enhanced due to the apparent shear stress resulting from the nonzero value of cross-correlation between the streamwise and normal components of fluctuating velocity, , just as in turbulent shear flows, although the studied flow is quite different from turbulent flows in the sense that it is highly periodical and therefore free from randomness. This periodicity leads to a quick recovery of the velocity defect in some region of the wake of the rod. Special attention is paid to the time variation of flow structure. The crisscross motion of the Karman vortex previously found to occur is discussed again, and how it appears is explained in terms of the interaction between the Karman vortex and the disturbed wall shear layer. In the discussion of this relationship, wavering motion of the separation vorticity layers formed on both sides of the rod and the periodic formation of an isolated vortex island from the lifted tip of the wall vorticity layer are analyzed. The vortex island is found to play an important role not only for the occurrence of the crisscross motion of Karman vortex but also for the generation of the nonzero value of .  相似文献   

8.
非对称槽道中涡旋波的特性研究   总被引:3,自引:0,他引:3  
利用PIV流场显示技术,对振荡流体在非对称槽道中涡旋波的产生、发展和消失的规律进 行了实验研究和分析,测得了涡旋波流场的速度矢量图,阐明了涡旋波流场周期性变化的特 点. 结合涡动力学方程,深入分析并揭示了做周期性运动的流体能在槽道中产生波的特性这 一规律,从中发现:流体周期变化的非定常性和不对称的槽道结构是形成涡旋波流动的主要 因素. 本文对涡旋波流场中各个旋涡的速度分布和涡量进行了测量和计算,分析了涡旋波 强化传质的机理,并研究了Re数对涡旋波流动的影响  相似文献   

9.
Steady and unsteady asymmetric vortical flows around slender bodies at high angles of attack are solved using the unsteady, compressible, this-layer Navier-Stokes equations. An implicit, upwind-biased, flux-difference splitting, finite-volume scheme is used for the numerical computations. For supersonic flows past point cones, the locally conical flow assumption has been used for efficient computational studies of this phenomenon. Asymmetric flows past a 5° semiapex-angle circular cone at different angles of attack, free-stream Mach numbers, and Reynolds numbers has been studied in responses to different sources of disturbances. The effects of grid fineness and computational domain size have also been investigated. Next, the responses of three-dimensional supersonic asymmetric flow around a 5° circular cone at different angles of attack and Reynolds numbers to short-duration sideslip disturbances are presented. The results show that flow asymmetry becomes stronger as the Reynolds number and angles of attack are increased. The asymmetric solutions show spatial vortex shedding which is qualitatively similar to the temporal vortex shedding of the unsteady locally conical flow. A cylindrical afterbody is also added to the same cone to study the effect of a cylindrical part on the flow asymmetry. One of the cases of flow over a cone-cylinder configuration is validated fairly well by experimental data.  相似文献   

10.
The present investigation examines the suppression of unsteady, two‐dimensional wake instabilities of a pair of identical circular cylinders, placed side‐by‐side normal to freestream at a low Reynolds number of 150. It is found that when the cylinders are counter‐rotated, unsteady vortex wakes can be completely suppressed. At fast enough rotational speeds, a virtual elliptic body is produced by a closed streamline, strongly resembling a doublet potential flow. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
We study vortex flows in a rotating circular cylinder of incompressible fluid resulting from the sudden turning-on of a transverse magnetic field. The investigation is performed for the initial stage when secondary flow is determined mainly by Lorentz forces, and the effect of viscosity and the convective transport of vorticity by secondary flow is negligibly small. No restrictions are imposed on the magnetic Reynolds number Rm for the basic rotational motion; the number Rm' calculated from a typical secondary flow speed is assumed small.  相似文献   

12.
The objective of the present study is the detailed analysis of the unsteady vortex dynamics downstream of the human glottis during phonation at typical fundamental frequencies of the male voice of about 120 Hz. A hydraulic respiratory mock circuit has been built, including a factor of three up-scaled realistic dynamic model of the vocal folds. Time-resolving flow measurements were carried out downstream of the glottis by means of high-speed particle image velocimetry (PIV). The function of the human glottis is reproduced by two counter-rotating cams, each of which is covered with a stretched silicone membrane. The three-dimensional (3-D) geometry of the cams is designed such that the rotation leads to a realistic time-varying motion and profile of the glottis and waveform of the glottal cycle. Using high-speed PIV, the velocity field is captured with high spatial and temporal resolution to investigate the unsteady vortex dynamics of the cyclic jet-like flow in the vocal tract. The results help us to understand the vorticity interaction within the pulsating jet and, consequently, the generated sound in a human voice. In addition, changing the 3-D contours of the cams enables us to investigate basic pathological differences of the glottis function and the resulting alterations of the velocity and vorticity field in the vocal tract. The results are presented for typical physiological flow conditions in the human glottis. The frequencies of periodic vortex structures generated downstream of the glottis are fivefold higher than the fundamental frequency of the vocal folds oscillation. The highest vorticity fluctuations have a phase shift of 35% relative to the opening of the glottis. Finally, the flow field in the vocal tract is identified to be highly three-dimensional.  相似文献   

13.
Time-dependent vorticity fields of elliptic vortex rings of aspect ratios 2, 3 and 4 were measured by means of hot-wire anemometry. The time evolution of their vorticity fields was analyzed and the processes of vortex ring formation, advection, interaction and decay, and the mechanism of vortex bifurcation are studied. The following crosslinking model is proposed: A thick vortical region composed of many equivalent vortex filaments with distributed cores is initially formed at the orifice and they behave as inviscid filaments. The elliptic ring deforms and the end parts of its major axis get closer. Then, the vortex filaments interact at the touching point and the ring partially bifurcates. Almost simultaneously, turbulent spot appears at this point, and propagates around the ring cross section, thus preventing further bifurcation. And it becomes a turbulent blob. This model is also supported by numerical simulation by a high-order vortex method and the Navier-Stokes solution.  相似文献   

14.
The process of break-down and reconnection of vortex filaments is considered by the method of three-dimensional vortex singularities (vortons) in various situations, including oblique interaction of a vortex ring with a boundary in shear flow, shedding of a vortex ring from a horseshoe vortex, instability of elliptic vortex ring, Crow instability of two perturbed antiparallel vortex filaments, merging and subsequent splitting of vortex rings. Special attention is paid to the global integrals (vorticity, momentum, angular momentum) and to the inviscid dissipation of energy. The visualization of the effective vortex core, created by the interference of the vorticity fields of vortons, is presented. The comparisons with other methods of simulation of three-dimensional vortex interactions and with the observations have been made.  相似文献   

15.
16.
A two‐dimensional inviscid incompressible flow in a rectilinear channel of finite length is studied numerically. Both the normal velocity and the vorticity are given at the inlet, and only the normal velocity is specified at the outlet. The flow is described in terms of the stream function and vorticity. To solve the unsteady problem numerically, we propose a version of the vortex particle method. The vorticity field is approximated using its values at a set of fluid particles. A pseudo‐symplectic integrator is employed to solve the system of ordinary differential equations governing the motion of fluid particles. The stream function is computed using the Galerkin method. Unsteady flows developing from an initial perturbation in the form of an elliptical patch of vorticity are calculated for various values of the volume flux of fluid through the channel. It is shown that if the flux of fluid is large, the initial vortex patch is washed out of the channel, and when the flux is reduced, the initial perturbation evolves to a steady flow with stagnation regions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Interaction flow field of the sonic air jet through diamond shaped orifices at different incidence angles (10 degrees, 27.5 degrees, 45 degrees and 90 degrees) and total pressures (0.10 MPa and 0. 46 MPa) with a Mach 5.0 freestream was studied experimentally. A 90 degrees circular injector was examined for comparison. Crosssection Mach number contours were acquired by a Pitot-cone five-hole pressure probe. The results indicate that the low Mach semicircular region close to the wall is the wake region. The boundary layer thinning is in the areas adjacent to the wake. For the detached case, the interaction shock extends further into the freestream, and the shock shape has more curvature, also the low-Mach upwash region is larger. The vortices of the plume and the height of the jet interaction shock increase with increasing incidence angle and jet pressure. 90 degrees diamond and circular injector have stronger plume vorticity, and for the circular injector low-Mach region is smaller than that for the diamond injector. Tapered ramp increases the plume vorticity, and the double ramp reduces the level of vorticity. The three-dimensional interaction shock shape was modeled from the surface shock shape, the center plane shock shape, and crosssectional shock shape. The shock total pressure was estimated with the normal component of the Mach number using normal shock theory. The shock induced total pressure losses decrease with decreasing jet incidence angle and injection pressure, where the largest losses are incurred by the 90 degrees, circular injector.  相似文献   

18.
波涡相互作用研究的某些进展(Ⅱ)   总被引:4,自引:1,他引:3  
吴介之 《力学进展》1992,22(1):35-46
<正> 5 波涡共振 从第3节的感受性问题再前进一步,自然要问在什么条件下入射波激发起涡中之波的最大响应.这就导致了入射波与层状或轴状涡中受激波之间共振的概念,简称波涡共振.一般说来,在流体内部若有两个或多个波相会,它们将互相穿透而沿原来的方向离去.但若它们的波矢量和频率满足一定的关系(参见Craik 1985),就会在相会点产生新的波.2阶扰动的振幅可达到1阶扰动振幅的量级,而且流场中会出现一些重要的独特性质.这就是流体内部波共振,波涡共振是其一类情形.   相似文献   

19.
Vortices generated at the open end of a planar shock tube are numerically simulated using the AUSM+ scheme. This scheme is known to have low numerical dissipation and therefore is suitable for capturing unsteady vortex motion. However, this low numerical dissipation can also cause oscillations in the vorticity field. Numerical experiments presented here highlight the effect of numerical dissipation on the simulated vortex, as well as the role played by turbulence models. Two turbulence models – the shear-stress-transport (SST) and its modified version for unsteady flows (SST-SAS) – are employed to observe the effect of including turbulence models in such complex flows where the vortex has an embedded shock.  相似文献   

20.
In order to describe the unsteady flow of a viscous fluid induced by a toroidal vorticity distribution we use the two-scale expansion method [6], By this means we obtain a vorticity distribution in the core of the thin vortex ring that is consistent with the external potential flow. The time dependence of the flow characteristics obtained confirms the experimental results for the inertial regime. The interaction of coaxial vortex rings is investigated as an example.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.5, pp. 52–59, September–October, 1992.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号