首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 548 毫秒
1.
Magnetic excitations in two-leg S=1/2 ladders are studied both experimentally and theoretically. Experimentally, we report on the reflectivity, the transmittance and the optical conductivity σ(ω) of undoped LaxCa14−xCu24O41 for x=4, 5, and 5.2. Using two different theoretical approaches (Jordan-Wigner fermions and perturbation theory), we calculate the dispersion of the elementary triplets, the optical conductivity and the momentum-resolved spectral density of two-triplet excitations for 0.2≤J/J≤1.2. We discuss phonon-assisted two-triplet absorption, the existence of two-triplet bound states, the two-triplet continuum, and the size of the exchange parameters.  相似文献   

2.
We report a resonant inelastic X-ray scattering (RIXS) study on perovskite manganese oxides La1−xSrxMnO3 (x=0, 0.2, and 0.4) at Mn K-absorption edge. Hole-doping effect on the electronic excitations in the strongly correlated electron systems is elucidated by comparing with undoped LaMnO3. The scattering spectra of metallic La0.6Sr0.4MnO3 show that a salient peak appears in low energies indicating the persistence of the Mott gap. At the same time, the energy gap is partly filled by doping holes and the spectral weight shifts toward lower energies. Though the peak position of the excitations shows weak dispersion in momentum dependence, RIXS intensity changes as a function of the scattering angle (2θ), which is related to the anisotropy. Furthermore, anisotropic temperature dependence is observed in La0.8Sr0.2MnO3 which shows a metal-insulator transition associated with a ferromagnetic transition. We consider that the anisotropy in the RIXS spectra is possibly attributed to the correlation of the orbital degrees of freedom. The anisotropy is large in LaMnO3 with long-range orbital order, while it is small but finite in hole-doped La1−xSrxMnO3 which indicates persistence of short-range orbital correlation.  相似文献   

3.
3s- and 3p-core level excitations for a large number of 3d-transition metal oxides, with a formal 3d occupation from 3d0 to 3d10, have been measured by electron energy loss spectroscopy in reflection geometry (REELS) with primary energies 200 eV≤E 0≤1600 eV. Their intensities decrease systematically with the formal 3d-count, classifying them as transitions to empty 3d-states. The structure of the 3s excitations is analysed in detail and is compared to the 3s-XPS photoemission spectra of the samples. This 3s-REELS structure and its change with the 3d occupation can be explained by the assumption that the excitation arises mainly from a 3s23dn→3s13dn+1 quadrupole transition.  相似文献   

4.
The cerium cyclotriphosphate CeP3O9·3H2O and polyphosphate Ce(PO3)3 have been optically investigated for the first time. In both materials, excitation and emission spectra under UV and X-ray excitations as well as emission decays of Ce3+ were measured at room temperature. The spectroscopic results of anhydrous Ce(PO3)3, prepared by progressively heating the corresponding CeP3O9. 3H2O, are discussed and correlated with the structural data.For the Ce(PO3)3 polyphosphate material, the Stokes shift of the d-f emission is very small (760 cm−1), inducing an efficient ultraviolet luminescence and a new application as scintillator.  相似文献   

5.
The one-triplet excitation spectra and thermodynamic properties for the dimerized phase of the frustrated bilayer Heisenberg model are studied using strong-coupling expansion theory. The model has an exact dimerized ground state as well as exact one-triplet excitations in a special case that the frustration J2 is equal to the in-plane coupling J1. We demonstrate that the models with and without frustrations have distinct excitation spectra, so their thermodynamic properties exhibit quite different behaviors. Especially, the low-temperature behaviors of the frustrated model with J 1=J 2 are independent of the inter-dimer couplings, due to the exact one-triplet excitations. Received 16 March 2000 and Received in final form 2 July 2000  相似文献   

6.
THz and infrared spectroscopies are widely utilized to investigate the electrodynamic properties of the novel iron-based superconductors in the normal and superconducting states. Besides electronic excitations and correlations, electron-phonon coupling and the influence of magnetism, the experiments yield important information on low-lying excitations and help to clarify the number and symmetry of superconducting gaps. While the experimental data of different groups converge, the interpretation is still under debate. Here we review the status of optical investigations on the superconducting state for the 122 and 11 family of iron pnictides.  相似文献   

7.
We report on specific heat measurements of the quasi-one-dimensional organic salt (TMTSF)2AsF6 in its spin density wave state between 75 mK and 7 K. Similarly to (TMTSF)2PF6, we find discontinuities in the lattice contribution at 1.9 K an d 3.5 K ascribed to sub-spin density wave phases. Time-dependent effects due to dynamics of low-energy excitations in metastable states occur only below 0.2 K which yields an activation energy for the equilibrium energy relaxation process of 0.34 K, 4-5 times smaller than found for (TMTSF)2PF6. Finally the reduction of the low-energy excitations contribution to the specific heat in comparison to PF6 reveals an intermediate cubic-like regime between 0.25 and 0.5 K that we tentatively describe as the phason contribution of the incommensurate spin density wave modulation. Received: 17 March 1998 / Revised: 27 July 1998 / Accepted: 22 September 1998  相似文献   

8.
We use the self-consistent harmonic approximation (SCHA) to study the two-dimensional classical Heisenberg anisotropic (easy-plane) ferromagnetic model including nearest- and next-nearest neighbor exchange interactions. For temperatures much lower than the Kosterlitz-Thouless phase transition temperature T KT, spin waves must be the most relevant excitations in the system and the SCHA must account for its behavior. However, for temperatures near T KT, we should expect vortex pairs to be quite important. The effect of these vortex excitations on the phase transition temperature is included in our theory as a renormalization of the exchange interactions. Then, combining the SCHA theory to the renormalization effect due to vortex pairs, we calculate the dependence of T KT as a function of the easy-plane anisotropies and exchange interactions. Received 3 April 2001 and Received in final form 20 September 2001  相似文献   

9.
We have studied electronic excitations at the surfaces of NiO (100), Cr2O3(111), and Al2O3(111) thin films with Electron Energy Loss Spectroscopy (EELS). On NiO (100) we observe surface electronic excitations in the energy range of the band gap which shift upon adsorption of NO. Ab initio cluster calculations show that these excitations occur within the Ni ions at the oxide surface. The (111) surface of Cr2O3 is characterized by distinct excitations which are also strongly influenced by the interaction with adsorbates. Temperature-dependent measurements show that two different states of the surface exist which are separated by an activation energy of about 10 meV. For Al2O3(111) we present data for a CO adsorbate. The oxide is quite inert with respect to CO adsorption as indicated by desorption temperatures between 38 K and 67 K. Due to the weak interaction with the substrate the a3II valence excitation of CO shows a clearly detectable vibrational splitting which has not been observed previously for a CO adsorbate in the (sub)monolayer coverage range. For several different adsorption state the lifetimes of the a3II state could be estimated from the halfwidths of the loss peaks, yielding values between 10–15 s for the most strongly bound species and 10–14 s for the CO multilayer.  相似文献   

10.
The S = 1 quasi-one-dimensional Heisenberg antiferromagnet [Ni(C5H14N2)2N3](PF6), abbreviated as NDMAP, has been studied by electron spin resonance in a magnetic field above the critical field (H c). We studied angular and frequency dependences of spin excitations. The angular dependence of the spin excitations in the vicinity of H c is explained well by a phenomenological field theory, but the agreement between the experiment and the calculation is not satisfactory above 10 T. In high magnetic fields above 15 T, we obtained some characteristic spin excitations which are well explained by conventional antiferromagnetic resonance modes. These results suggest that the spin excitations change from a quantum state to a classical one due to the suppression of quantum fluctuations by high magnetic fields.  相似文献   

11.
The recent discovery of Ds states suggests the existence of radial excitations. Our semirelativistic quark potential model succeeds in reproducing these states within one to two percent of accuracy compared with the experiments, D s0(2860) and D s *(2715), which are identified as 0+ and 1- radial excitations (n = 2). We also present calculations of radial excitations for B/B s heavy mesons. The relation between our formulation and the modified Goldberger-Treiman relation is also described.  相似文献   

12.
A new molecular complex of C60 with tetrabenzo(1,2-bis[4H-thiopyran-4-ylidene]ethene), Bz4BTPE C60 (1) has been obtained. The complex has a layered structure in which closely packed hexagonal layers of C60 alternate with the layers composed of Bz4BTPE molecules. The complex has a neutral ground state according to UV-vis-NIR spectrum. It has been found that single crystals of 1 show low ‘dark’ conductivity of σ∼10−10 (Ω cm)−1. A 102 increase in photocurrent has been observed upon illuminating the crystal with white light. Photoconductivity of 1 is sensitive to magnetic field with B0<1 T and increases up to 5% in magnetic field. The photoconductivity spectra of the complex indicate that free charge carriers are generated in the UV-visible range mainly by the Bz4BTPE excitation (the peaks at 622, 562, 472 and 348 nm) with a possible contribution of charge transfer excitations between neighboring C60 molecules (the peak at 472 nm).  相似文献   

13.
The two-layer square lattice quantum antiferromagnet with spins 12 shows a zero-field magnetic order-disorder transition at a critical ratio of the inter-plane to intra-plane couplings. Adding a uniform magnetic field tunes the system to canted antiferromagnetism and eventually to a fully polarized state; similar behavior occurs for ferromagnetic intra-plane coupling. Based on a bond operator spin representation, we propose an approximate ground state wavefunction which consistently covers all phases by means of a unitary transformation. The excitations can be efficiently described as independent bosons; in the antiferromagnetic phase these reduce to the well-known spin waves, whereas they describe gapped spin-1 excitations in the singlet phase. We compute the spectra of these excitations as well as the magnetizations throughout the whole phase diagram. Received 23 April 2001  相似文献   

14.
We have successfully synthesized the α-FeSex binary tetragonal superconductors with nominal composition of FeSex (x=0.6-1.0) via conventional solid state reactions between Fe and Se sealed in quartz tubes. Fe and β-FeSe are the most commonly seen impurities in this binary system. A low-temperature annealing at 400 °C is found to be crucial to remove β-FeSe, which is the thermodynamic stable phase with hexagonal symmetry. For all the samples of FeSex, superconductivity is confirmed by magnetic measurements as well as resistivity measurements with their Tc at around 8 K. We noticed that their Tc does not vary with the different nominal Se amount. High-resolution synchrotron X-ray diffraction analysis revealed that the unit cell parameters of all these samples do not change within the error range, and their structure only tolerate the same very small amount of Se deficiency. Based on this study, we concluded that the α-FeSex superconductor only exist in a very narrow deficiency range.  相似文献   

15.
The effects of spin structures on the Fermi surface topologies of BaFe2As2 were calculated using the first-principles approach. Here, we considered the nonmagnetic, Checkerboard, Stripe, and SDW (spin-density-wave) structures as well as a tetragonal structure labeled as STR17. By comparing the calculated results with the published angle-resolved photoemission spectroscopy from the literature, we propose that most of the experimentally observed Fermi surfaces of BaFe2As2 are the thermal mixture of those of the SDW, STR17, and Stripe structures.  相似文献   

16.
In this paper we present a macroscopic theory of the Raman scattering excited in condition of total reflection (RSTR) at the interface between two isotropic transparent solids. We obtain a general expression of the RSTR efficiency and discuss its angular dependence. We show that such a kind of scattering is suitable for studying the bulk excitations in a very thin region under the interface as well as the surface excitations in crystals. A comparison between theory and preliminary experimental results for a sapphire-NaBrO3 interface is reported.  相似文献   

17.
Infrared reflectance, and transmission measurements as well as Raman scattering have been used to study the RE1+xBa2-xCu3O6 (RE = Nd, Sm) and YBa2Cu3O6 absorption bands in the 1100-1500 cm-1 infrared range as a function of temperature and beam polarization. In addition to two-phonon absorption between 1100 and 1170 cm-1, we observe excitations around 1400 cm-1, occurring in oxygen rich enclosures within the samples, and assign them to an excitation involving two-phonons plus the 270 cm-1 local mode related to Cu-O broken chains. Thus, the previously reported possible magnetic origin of the 1436 cm-1 sharp absorption band in YBa2Cu3O6 is contested. Received 14 February 2001 and Received in final form 12 April 2001  相似文献   

18.
Polarized infrared reflectivity measurements between 300 and 10 K have been carried out on charge density waves (CDW) conductor blue bronze Tl0.3MoO3. Three important features are observed: (i) A bump at 1155 cm−1 in the reflectivity spectra of Tl0.3MoO3 at 300 K is a precursor of the Peierls gap due to optical excitations across a pseudogap, and this kind of Peierls-like gap opens gradually with decreasing temperature from 180 to 160 K. (ii) The three sharp modes as “triplet” of infrared reflectivity between 800 and 1000 cm−1 of Tl0.3MoO3 along [1 0 2] axis show red shift compared to K0.3MoO3 and Rb0.3MoO3, which is assigned to the increase of the distance of Mo-O bond with the substitution of thallium ions. (iii) Two peaks at about 514 and 644 cm−1 in the far-infrared reflectivity spectra of Tl0.3MoO3 along [1 0 2] direction are suggested to be the electronic transitions from the valence band to the midgap state and from occupied midgap state to the conduction band, respectively.  相似文献   

19.
We study the aggregation of oxygen dipoles well dispersed in a CaF2 crystal upon annealing at temperatures ranging from 370 to 420 K. The concentration of oxygen dipoles is monitored by measuring the intensity of the ionic thermocurrent peak as well as by absorption and luminescence spectroscopies. Results from three methods agree within experimental error and yield an activation energy of (1.2±0.1) eV for the diffusion of isolated oxygen centres in the crystal.  相似文献   

20.
Room temperature multiferroic electroceramics of Gd doped BiFeO3 monophasic materials have been synthesized adopting a slow step sintering schedule. Incorporation of Gd nucleates the development of orthorhombic grain growth habit without the appearance of any significant impurity phases with respect to original rhombohedral (R3c) phase of un-doped BiFeO3. It is observed that, the materials showed room temperature enhanced electric polarization as well as ferromagnetism when rare earth ions like Gd doping is critically optimized (x=0.15) in the composition formula of Bi1+2xGd2x/2Fe1−2xO3. We believe that magnetic moment of Gd+3 ions in Gd doped BiFeO3 tends to align in the same direction with respect to ferromagnetic component associated with the iron sub lattice. The dielectric constant as well as loss factor shows strong dispersion at lower frequencies and the value of leakage current is greatly suppressed with the increase in concentration of x in the above composition. Addition of excess bismuth and Gd (x=0.1 and 0.15) caused structural transformation as well as compensated bismuth loss during high temperature sintering. Doping of Gd in BiFeO3 also suppresses spiral spin modulation structure, which can change Fe-O-Fe bond angle or spin order resulting in enhanced ferromagnetic property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号