首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
将单壁碳纳米管(SWCNT′s)分散在10g.L-1十二烷基磺酸钠溶液中并滴涂在玻碳电极表面,红外灯烘干后,制备了单壁碳纳米管修饰电极。采用循环伏安法研究了盐酸利多卡因在修饰电极上的电化学行为。结果表明:盐酸利多卡因在该修饰电极上出现了一个灵敏的氧化峰,其峰电流比在裸玻碳电极上增大了5倍。据此提出了用循环伏安法测定盐酸利多卡因的方法。盐酸利多卡因的浓度在0.9~50.0μmol.L-1范围内,氧化峰电流与其浓度呈线性关系,检出限(3S/N)为0.3μmol.L-1。修饰电极用于盐酸利多卡因注射液中盐酸利多卡因的测定,测定值与标示值相符,加标回收率在98.0%~105%之间。  相似文献   

2.
研究盐酸异丙嗪在β-环糊精修饰多壁碳纳米管玻碳电极上的电化学行为,建立了一种新的测定盐酸异丙嗪的电化学分析方法.在碳纳米管和β-环糊精的协同作用下,用循环伏安法研究了盐酸异丙嗪在修饰电极上的氧化还原特性,结果表明该修饰电极对盐酸异丙嗪具有显著的催化氧化作用.在pH=5.4的磷酸盐缓冲溶液中,氧化峰电流与盐酸异丙嗪浓度在...  相似文献   

3.
研究了黄嘌呤在离子液体-纳米金-碳纳米管修饰玻碳电极上的电化学行为。结果表明,在0.1mol/L磷酸盐(pH=4.4)介质中,修饰电极对黄嘌呤氧化具有强的电催化作用,黄嘌呤在0.9V(vs.SCE)左右产生一灵敏的氧化峰。在优化的实验条件下,用此峰测定黄嘌呤的线性范围为1.5×10-7~1.0×10-5mol/L,检出限为3.5×10-8mol/L。该修饰电极具有良好的重现性和稳定性。  相似文献   

4.
单壁碳纳米管和室温离子液体胶修饰电极   总被引:3,自引:0,他引:3  
张旭志  焦奎 《物理化学学报》2008,24(8):1439-1444
短单壁碳纳米管(S-SWNTs)与疏水性室温离子液体(RTIL)1-丁基-3-甲基咪唑六氟磷酸盐(BMIMPF6)以质量比1:1研成胶, 修饰在玻碳电极(GCE)上制备S-SWNT&;RTIL/GCE. 以铁氰化钾、抗坏血酸(AA)和亚甲基蓝(MB)为电化学探针, 用伏安法表征. 结果表明, 该修饰电极具有优异的电催化性能和富集效应. 以B-R缓冲溶液为支持电解液, 单链鲱鱼精脱氧核糖核酸(ssDNA)在S-SWNT&;RTIL/GCE上具有灵敏的伏安响应, 于0.532和0.808 V处分别出现鸟嘌呤碱基和腺嘌呤碱基的氧化峰. 鸟嘌呤碱基和腺嘌呤碱基在S-SWNT&;RTIL/GCE上的电极反应标准速率常数k’s分别为1.84×10-2和3.69×10-2 s-1. 在最佳条件下, 应用微分脉冲伏安法检测, 鸟嘌呤碱基的氧化峰电流与ssDNA 的浓度在40 μg·L-1-5.0 mg·L-1 范围内呈现良好的线性关系, 检测限为5 μg·L-1 (S/N=3, 信噪比).  相似文献   

5.
电化学方法检测DNA碳纳米管修饰电极   总被引:3,自引:0,他引:3  
DNA;碳纳米管;修饰电极;硫堇;电化学指示剂  相似文献   

6.
制备了碳纳米管-离子液体糊修饰电极并用电化学方法对其进行了表征,研究对乙酰氨基酚在碳纳米管-离子液体糊修饰电极上的电化学行为,建立了以碳纳米管-离子液体糊修饰电极测定对乙酰氨基酚(APAP)的灵敏的电化学方法.在优化的实验条件下,对乙酰氨基酚的氧化峰电流与其浓度在1.0×10-7~1.0×10-6 mol/L和1.0×...  相似文献   

7.
胡椒碱在碳纳米管修饰电极上的电化学行为研究   总被引:1,自引:1,他引:0  
研究了胡椒碱在碳纳米管修饰电极上的电化学行为,在pH为6.4的磷酸盐缓冲溶液中,胡椒碱在-1.12V(vs.SCE)处有一灵敏的还原峰.与裸电极相比,还原峰电位明显正移,峰电流显著增加,表明该修饰电极对胡椒碱的还原反应具有明显的催化作用.峰电流与胡椒碱的浓度在10-6~10-5mol/L范围内呈良好的线性关系(r=0.995),检出限为2.0×10-7mol/L.同时,计算了电荷转移数和扩散系数,考查了修饰电极的重现性,7次平行测量的RSD为4.96%.  相似文献   

8.
氮掺杂碳纳米管修饰电极的电化学行为   总被引:1,自引:0,他引:1  
董俊萍  曲晓敏  王利军  王田霖 《化学学报》2007,65(21):2405-2410
制备了氮掺杂改性的碳纳米管, 并用循环伏安法(CV)测定了多巴胺(DA)和抗坏血酸(AA)在不同氮含量的碳纳米管修饰电极上的电化学行为. 结果表明, 氮掺杂碳纳米管修饰电极对AA和DA有不同的电催化行为, 其中高氮含量修饰电极对AA的催化作用强, 而低氮含量修饰电极对DA的催化作用强. 微分脉冲伏安法(DPV)的结果显示, DA的氧化峰电流与其浓度在5.0×10-6~2.0×10-4 mol/L范围内呈良好的线性关系, 检出限达1.64×10-6 mol/L (S/N=3); AA氧化峰电流与其浓度在3.0×10-5~1.0×10-2 mol/L范围内呈良好的线性关系, 检出限达3.26×10-6 mol/L (S/N=3). 该修饰电极在AA大量存在(AA浓度为DA浓度两万倍)时可选择性地实现多巴胺的测定而不造成干扰.  相似文献   

9.
盐酸伪麻黄碱;碳纳米管修饰电极;电催化氧化;电化学动力学  相似文献   

10.
左旋多巴在单层碳纳米管修饰电极上的电化学行为   总被引:3,自引:0,他引:3  
单层碳纳米管修饰电极对左旋多巴的电化学氧化还原具有很高的催化活性。在pH4.6的0.1mol/LHAc NaAc缓冲溶液中,可得到一对峰形很好的氧化还原峰。电极反应受扩散控制,反应过程中电子的得失伴随着等量的质子参与。氧化峰电流与左旋多巴浓度在2.1×10-4~5.0×10-6mol/L范围内成线性关系,检出限为2.0×10-6mol/L。  相似文献   

11.
多壁碳纳米管修饰玻碳电极测定乙炔雌二醇   总被引:4,自引:0,他引:4  
多壁碳纳米管修饰玻碳电极测定乙炔雌二醇;多壁碳纳米管;乙炔雌二醇;化学修饰电极;电化学测定  相似文献   

12.
A novel amperometric sensor based on the incorporation of multiwalled carbon nanotubes (MWCNT) into a poly(methylene blue) (PMB) film immobilized on carbon composite electrodes is described. Cyclic voltammetry indicated that at a surface covered by a MWCNT/PMB layer the cathodic reduction of hydrogen peroxide is facilitated and occurs already at 0.0 V versus SCE. The effect of the order of deposition of PMB and MWCNT, as well as its loading, on electrochemical behaviour was evaluated by cyclic voltammetry and electrochemical impedance spectroscopy. The influence of the various immobilised platforms on the electrocatalytic performance towards hydrogen peroxide was also examined.  相似文献   

13.
研制了石墨烯与L-胱氨酸复合膜化学修饰电极(GR-L-CysS/GCE),并研究了盐酸异丙肾上腺素在修饰电极上的电化学行为和测定方法。结果表明,在0.2 mol/L Na2HPO4-柠檬酸(pH 7.4)溶液中,GR-L-CysS/GCE对盐酸异丙肾上腺素的电化学氧化具有明显的催化增敏作用,氧化峰电流相对于在裸玻碳电极上增加了13倍。在优化实验条件下,定量测定的线性范围为4.0×10-6~1.6×10-4mol/L,r为0.9977,方法检出限(S/N=3)为8.4×10-7mol/L。探讨了盐酸异丙肾上腺素在GR-L-CysS/GCE上的电催化过程和反应机理,测得在本体系中参与反应的电子转移数和质子数均为1,电子转移系数为0.4635。对样品进行测定及加标回收实验,回收率在94.9%~102.9%之间。  相似文献   

14.
将石墨烯修饰在玻碳电极表面用于循环伏安法测定盐酸表阿霉素。在pH 4.0的B-R缓冲溶液中,在修饰电极上,盐酸表阿霉素在-0.382V处可见明显的氧化峰,且氧化峰电流比在裸玻碳电极上提高两倍以上。盐酸表阿霉素的氧化峰电流与其浓度在1.0×10-7~1.0×10-6 mol·L-1范围内呈线性关系,检出限(3S/N)为2.0×10-9 mol·L-1。方法用于盐酸表阿霉素注射液的测定,加标回收率在95.9%~97.7%之间,测定值的相对标准偏差(n=6)小于2%。  相似文献   

15.
A new method for the determination of trace copper was described. A multiwalled carbon nanotube modified carbon paste electrode was prepared and the adsorptive voltammetric behavior of copper‐alizarin red S (ARS) complex at the modified electrode was investigated. By use of the second‐order derivative linear sweep voltammetry, it was found that in 0.04 mol/L acetate buffer solution (pH 4.2) containing 4×10?6 mol/L ARS, when accumulation potential is 0 mV, accumulation time is 60 s and scan rate is 100 mV/s, the complex can be adsorbed on the surface of the electrode, yielding one sensitive reduction peak at ?172 mV (vs. SCE). The peak current of the complex is proportional to the concentration of Cu(II) in the range of 2.0×10?11–4.0×10?7 mol L?1 with a detection limit (S/N=3) of 8.0×10?12 mol/L (4 min accumulation). The proposed method was successfully applied to the determination of copper in biological samples with satisfactory results, the recoveries were found to be 96%–102%.  相似文献   

16.
碳纳米管;修饰电极;微分伏安;二硝基苯酚;测定  相似文献   

17.
多壁碳纳米管修饰电极测定氨氯地平   总被引:1,自引:1,他引:1  
明亮  习霞  陈婷婷  刘杰 《应用化学》2008,25(7):829-0
氨氯地平;伏安测定;碳纳米管;化学修饰电极  相似文献   

18.
基于碳纳米管(CNTs)和硫堇(Th)的协同效应,将辣根过氧化物酶(HRP)通过戊二醛(GA)交联作用固定在硫堇(Th)/CNTs修饰电极上,构造了一种新型酶电极(HRP/GA-Th/CNTs/GC)。CNTs静电吸附正电荷的Th,而Th不仅可以促进电极和酶的氧化还原活性中心之间的电子传递,而且能使CNTs氨基(—NH2)功能化,从而利于HRP的固定。基于HRP/GA-Th/CNTs/GC电极的过氧化氢传感器具有较好的传感性能,且检出限低(0.3μmol.L-1)、响应时间短(5 s内)、抗干扰能力强。  相似文献   

19.
多壁碳纳米管修饰玻碳电极测定多巴酚丁胺的研究   总被引:4,自引:0,他引:4  
研究了多巴酚丁胺在多壁碳纳米管修饰电极上的电化学行为,建立了一种直接测定多巴酚丁胺的电化学方法。在0.3mol·L-1H2SO4底液中,氧化峰电位为0.57V(vs.Ag/AgCl),峰电流与多巴酚丁胺的浓度在5.0×10-8~1.0×10-5mol·L-1范围内呈良好的线性关系。该法的检出限为3.0×10-8mol·L-1。平均回收率为99.15%。1.0×10-5mol·L-1多巴酚丁胺平行测定8次的标准偏差为4.8%。用拟定的方法测定了多巴酚丁胺注射液中多巴酚丁胺的含量,结果满意。  相似文献   

20.
在玻碳电极上制备了碳纳米管负载纳米铂修饰电极(Pt-MWCNTs/GCE)。考察了联吡啶钌和富马酸酮替芬在3个不同电极上的电化学及其发光行为,并对其进行了对比。结果表明,在Pt-MWCNTs/GCE上富马酸酮替芬对联吡啶钌的电化学发光强度有明显的增敏作用,其增敏效果约为MWCNTs/GCE电极的2倍,约为裸玻碳电极的3.5倍,据此,建立了一种Pt-MWCNTs/GCE电极上电化学发光法检测富马酸酮替芬的新方法。在优化实验条件下,富马酸酮替芬的浓度在1.0×10-7~1.0×10-4mol/L范围内与其相对发光强度呈线性关系,线性回归方程为I=48.805×106c+221.03(r=0.9969),检出限为2.4×10-9mol/L,连续平行测定1.0×10-5mol/L的富马酸酮替芬溶液5次,发光强度的RSD为3.3%。对样品进行回收率实验,回收率为99%~104%,RSD为2.1%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号