首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We explore the ultraviolet continuum regime of causal dynamical triangulations, as probed by the flow of the spectral dimension. We set up a framework in which one can find continuum theories that can in principle fully reproduce the behavior of the latter in this regime. In particular, we show that, in 2 + 1 dimensions, Ho?ava-Lifshitz gravity can mimic the flow of the spectral dimension in causal dynamical triangulations to high accuracy and over a wide range of scales. This seems to provide evidence for an important connection between the two theories.  相似文献   

2.
The main goal of filtering is to obtain, recursively in time, good estimates of the state of a stochastic dynamical system based on noisy partial observations of the same. In settings where the signal/observation dynamics are significantly nonlinear or the noise intensities are high, an extended Kalman filter (EKF), which is essentially a first order approximation to an infinite dimensional problem, can perform quite poorly: it may require very frequent re-initializations and in some situations may even diverge. The theory of nonlinear filtering addresses these difficulties by considering the evolution of the conditional distribution of the state of the system given all the available observations, in the space of probability measures. We survey a variety of numerical schemes that have been developed in the literature for approximating the conditional distribution described by such stochastic evolution equations; with a special emphasis on an important family of schemes known as the particle filters. A numerical study is presented to illustrate that in settings where the signal/observation dynamics are non linear a suitably chosen nonlinear scheme can drastically outperform the extended Kalman filter.  相似文献   

3.
We consider the approximation of fluctuation induced almost invariant sets arising from stochastic dynamical systems. The dynamical evolution of densities is derived from the stochastic Frobenius-Perron operator. Given a stochastic kernel with a known distribution, approximate almost invariant sets are found by translating the problem into an eigenvalue problem derived from reversible Markov processes. Analytic and computational examples of the methods are used to illustrate the technique, and are shown to reveal the probability transport between almost invariant sets in nonlinear stochastic systems. Both small and large noise cases are considered.  相似文献   

4.
We consider long-time behavior of dynamical systems perturbed by a small noise. Under certain conditions, a slow component of such a motion, which is most important for long-time evolution, can be described as a motion on the cone of invariant measures of the non-perturbed system. The case of a finite number of extreme points of the cone is considered in this paper. As is known, in the generic case, the long-time evolution can be described by a hierarchy of cycles defined by the action functional for corresponding stochastic processes. This, in particular, allows to study metastable distributions and such effects as stochastic resonance. If the system has some symmetry in the logarithmic asymptotics of transition probabilities (rough symmetry),the hierarchy of cycles should be replaced by a hierarchy of Markov chains and their invariant measures.  相似文献   

5.
In this paper, we propose to leverage the Bayesian uncertainty information encoded in parameter distributions to inform the learning procedure for Bayesian models. We derive a first principle stochastic differential equation for the training dynamics of the mean and uncertainty parameter in the variational distributions. On the basis of the derived Bayesian stochastic differential equation, we apply the methodology of stochastic optimal control on the variational parameters to obtain individually controlled learning rates. We show that the resulting optimizer, StochControlSGD, is significantly more robust to large learning rates and can adaptively and individually control the learning rates of the variational parameters. The evolution of the control suggests separate and distinct dynamical behaviours in the training regimes for the mean and uncertainty parameters in Bayesian neural networks.  相似文献   

6.
Asbstract By casting stochastic optimal estimation of time series in path integral form, one can apply analytical and computational techniques of equilibrium statistical mechanics. In particular, one can use standard or accelerated Monte Carlo methods for smoothing, filtering and/or prediction. Here we demonstrate the applicability and efficiency of generalized (nonlocal) hybrid Monte Carlo and multigrid methods applied to optimal estimation, specifically smoothing. We test these methods on a stochastic diffusion dynamics in a bistable potential. This particular problem has been chosen to illustrate the speedup due to the nonlocal sampling technique, and because there is an available optimal solution which can be used to validate the solution via the hybrid Monte Carlo strategy. In addition to showing that the nonlocal hybrid Monte Carlo is statistically accurate, we demonstrate a significant speedup compared with other strategies, thus making it a practical alternative to smoothing/filtering and data assimilation on problems with state vectors of fairly large dimensions, as well as a large total number of time steps.  相似文献   

7.
Low-frequency variability (LFV) of the atmosphere refers to its behavior on time scales of 10–100 days, longer than the life cycle of a mid-latitude cyclone but shorter than a season. This behavior is still poorly understood and hard to predict. The present study compares various model reduction strategies that help in deriving simplified models of LFV.Three distinct strategies are applied here to reduce a fairly realistic, high-dimensional, quasi-geostrophic, 3-level (QG3) atmospheric model to lower dimensions: (i) an empirical–dynamical method, which retains only a few components in the projection of the full QG3 model equations onto a specified basis, and finds the linear deterministic and the stochastic corrections empirically as in Selten (1995) [5]; (ii) a purely dynamics-based technique, employing the stochastic mode reduction strategy of Majda et al. (2001) [62]; and (iii) a purely empirical, multi-level regression procedure, which specifies the functional form of the reduced model and finds the model coefficients by multiple polynomial regression as in Kravtsov et al. (2005) [3]. The empirical–dynamical and dynamical reduced models were further improved by sequential parameter estimation and benchmarked against multi-level regression models; the extended Kalman filter was used for the parameter estimation.Overall, the reduced models perform better when more statistical information is used in the model construction. Thus, the purely empirical stochastic models with quadratic nonlinearity and additive noise reproduce very well the linear properties of the full QG3 model’s LFV, i.e. its autocorrelations and spectra, as well as the nonlinear properties, i.e. the persistent flow regimes that induce non-Gaussian features in the model’s probability density function. The empirical–dynamical models capture the basic statistical properties of the full model’s LFV, such as the variance and integral correlation time scales of the leading LFV modes, as well as some of the regime behavior features, but fail to reproduce the detailed structure of autocorrelations and distort the statistics of the regimes. Dynamical models that use data assimilation corrections do capture the linear statistics to a degree comparable with that of empirical–dynamical models, but do much less well on the full QG3 model’s nonlinear dynamics. These results are discussed in terms of their implications for a better understanding and prediction of LFV.  相似文献   

8.
The polynomial chaos decomposition of stochastic variables and processes is implemented in conjunction with optimal polynomial control of nonlinear dynamical systems. The procedure is demonstrated on a base-excited system whereby ground motion is modeled as a stochastic process with a specified correlation function and is approximated by its Karhunen-Loeve expansion. An adaptive scheme for stochastic approximation with polynomial chaos bases is proposed which is based on a displacement-velocity norm and is applied to the identification of phase orbits of nonlinear oscillators. This approximation is then integrated in the design of an optimal polynomial controller, allowing for the efficient estimation of statistics and probability density functions of quantities of interest. Numerical investigations are carried out employing the polynomial chaos expansions and the Lyapunov asymptotic stability condition based control policy. The results reveal that the performance, as gaged by probabilistic quantities of interest, of the controlled oscillators is greatly improved. A comparative study is also presented against the classical stochastic optimal control, whereby statistical linearization based LQG is employed to design the optimal controller. It is remarked that the proposed polynomial chaos expansion is a preferred approach to the optimal control of nonlinear random oscillators.  相似文献   

9.
The concepts of information transfer and causal effect have received much recent attention, yet often the two are not appropriately distinguished and certain measures have been suggested to be suitable for both. We discuss two existing measures, transfer entropy and information flow, which can be used separately to quantify information transfer and causal information flow respectively. We apply these measures to cellular automata on a local scale in space and time, in order to explicitly contrast them and emphasize the differences between information transfer and causality. We also describe the manner in which the measures are complementary, including the conditions under which they in fact converge. We show that causal information flow is a primary tool to describe the causal structure of a system, while information transfer can then be used to describe the emergent computation on that causal structure.  相似文献   

10.
G. Costanza 《Physica A》2009,388(13):2600-2622
The continuum evolution equations are derived from updating rules for three classes of stochastic models. The first class corresponds to models whose stochastic continuum equations are of the Langevin type obtained after carrying out a “local average” known as coarse-graining. The second class consists of a hierarchy of continuum equations for the correlations of the dynamical variables obtained after making an average over realizations. This average generates a hierarchy of deterministic partial differential equations except when the dynamical variables do not depend on the values of the neighboring dynamical variables, in which case a hierarchy of ordinary differential equations is obtained. The third class of evolution equations for the correlations of the dynamical variable constitutes another hierarchy after calculating an average over both realizations and all the sites of the lattice. This double average generates a hierarchy of deterministic ordinary differential equations. The second and third classes of equations are truncated using a mean field (m,n)-closure approximation in order to obtain a finite set of equations. Illustrative examples of every class are given.  相似文献   

11.
We analyze noise-induced phenomena in nonlinear dynamical systems near a subcritical Hopf bifurcation. We investigate qualitative changes of probability distributions (stochastic bifurcations), coherence resonance, and stochastic synchronization. These effects are studied in dynamical systems for which a subcritical Hopf bifurcation occurs. We perform analytical calculations, numerical simulations and experiments on an electronic circuit. For the generalized Van der Pol model we uncover the similarities between the behavior of a self-sustained oscillator characterized by a subcritical Hopf bifurcation and an excitable system. The analogy is manifested through coherence resonance and stochastic synchronization. In particular, we show both experimentally and numerically that stochastic oscillations that appear due to noise in a system with hard excitation, can be partially synchronized even outside the oscillatory regime of the deterministic system.  相似文献   

12.
This paper proposes an approach that uses a parallel array to improve the reliability and robustness of logical stochastic resonance subject to colored noise. The experimental results demonstrate that (i) the increase of array size can extend the optimal range of noise intensity and increase the maximum probability of obtaining correct logic operation. (ii) The optimal range of noise correlation time is broadened with the increase of array size. (iii) The main difference between logical stochastic resonance subject to white noise and colored noise is that the increase of noise correlation time broadens the optimal range of noise intensity when the stochastic noise is colored noise. At the same time, the maximum probability of obtaining correct logic operation is close to 1. Therefore, reliable and robust logic gate can be realized under a certain array size.  相似文献   

13.
Infrared search and track technology for small target plays an important role in infrared warning and guidance. In view of the tacking randomness and uncertainty caused by background clutter and noise interference, a robust tracking method for infrared small target based on sample constrained particle filtering and sparse representation is proposed in this paper. Firstly, to distinguish the normal region and interference region in target sub-blocks, we introduce a binary support vector, and combine it with the target sparse representation model, after which a particle filtering observation model based on sparse reconstruction error differences between sample targets is developed. Secondly, we utilize saliency extraction to obtain the high frequency area in infrared image, and make it as a priori knowledge of the transition probability model to limit the particle filtering sampling process. Lastly, the tracking result is brought about via target state estimation and the Bayesian posteriori probability calculation. Theoretical analyses and experimental results show that our method can enhance the state estimation ability of stochastic particles, improve the sparse representation adaptabilities for infrared small targets, and optimize the tracking accuracy for infrared small moving targets.  相似文献   

14.
Using the methods of optimal nonlinear Markov filtering, we obtain an algorithm for optimal mean-square estimation of appearance times of random pulsed variations in signal parameters against the background of white Gaussian noise in discrete time. Linear difference equations are used to describe signals, noise, and the observed processes. Equations of the algorithm permitting real-time calculations of the a posteriori variances and optimal estimations of pulse-appearance times are obtained in the approximation of Gaussian conditional probability densities. We present simulation results for algorithm operation in the particular problem of estimating the appearance times of two pulsed signals having the known shapes and observed against noise background.  相似文献   

15.
We present a reformulation of stochastic global optimization as a filtering problem. The motivation behind this reformulation comes from the fact that for many optimization problems we cannot evaluate exactly the objective function to be optimized. Similarly, we may not be able to evaluate exactly the functions involved in iterative optimization algorithms. For example, we may only have access to noisy measurements of the functions or statistical estimates provided through Monte Carlo sampling. This makes iterative optimization algorithms behave like stochastic maps. Naive global optimization amounts to evolving a collection of realizations of this stochastic map and picking the realization with the best properties. This motivates the use of filtering techniques to allow focusing on realizations that are more promising than others. In particular, we present a filtering reformulation of global optimization in terms of a special case of sequential importance sampling methods called particle filters. The increasing popularity of particle filters is based on the simplicity of their implementation and their flexibility. We utilize the flexibility of particle filters to construct a stochastic global optimization algorithm which can converge to the optimal solution appreciably faster than naive global optimization. Several examples of parametric exponential density estimation are provided to demonstrate the efficiency of the approach.  相似文献   

16.
We consider the topology of the BS causal completion, and show that it is not distorted in the causal direction. Using this result, we show that the causal completion with spacelike causal boundary in the sense of the BS construction satisfies the formal definition of the global hyperbolicity. We also show that any two causally related points in the causal completion can be connected by a causal geodesic.  相似文献   

17.
We study a closed model of the universe filled with viscous fluid and quintessence matter components in a Brans-Dicke type cosmological model. The dynamical equations imply that the universe may look like an accelerated flat Friedmann-Robertson-Walker universe at low redshift. We consider here dissipative processes which follow a causal thermodynamics. The theory is applied to viscous fluid inflation, where accepted values for the total entropy in the observable universe are obtained.  相似文献   

18.
We consider shift-invariant probability measures on subshift dynamical systems with a transition matrixA which satisfies the Chapman-Kolmogorov equation for some stochastic matrix compatible withA. We call them Chapman-Kolmogorov measures. A nonequilibrium entropy is associated to this class of dynamical systems. We show that ifA is irreducible and aperiodic, then there are Chapman-Kolmogorov measures distinct from the Markov chain associated with and its invariant row probability vectorq. If, moreover, (q, ) is a reversible chain, then we construct reversible Chapman-Kolmogorov measures on the subshift which are distinct from (q, ).  相似文献   

19.
The Minkowski causal logic, which is already known to be a complete orthomodular lattice, is found to be also an atomistic and irreducible logic, but to have no other essential properties to be represented in terms of all the subspace of some Hilbert space. Alternative representation of the logic in terms of subspaces of a real vector space or of the states in terms of probability measures are suggested.  相似文献   

20.
《Physics letters. A》2020,384(5):126121
We propose an analytic model to explore the effect of interaction stochasticity on the evolution of cooperation in spatial public goods game. The results show that whether cooperation can dominate in populations crucially depends on the player's probability of opting-out. Stochastic opting-out enhances cooperation as long as the probability of opting-out is less than a threshold depending on the graph's degree. Otherwise the promoting effect of spatial structures on cooperation is hindered even neutralized by stochastic opting-out. Moreover, there exists an intermediate optimal probability with which the advantage of cooperation over defection is maximized in the evolutionary race. Interestingly, the optimal probability is related to the percolation threshold of the underlying graph. Our findings illustrate that spatial structures may not facilitate cooperation when stochastic opting-out is allowed, and provide a link between physics and social sciences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号