首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Reactions of the third-row transition metal cation Os(+) with H(2), D(2), and HD to form OsH(+) (OsD(+)) were studied using a guided ion beam tandem mass spectrometer. A flow tube ion source produces Os(+) in its (6)D (6s(1)5d(6)) electronic ground state level. Corresponding state-specific reaction cross sections are obtained. The kinetic energy dependences of the cross sections for the endothermic formation of OsH(+) and OsD(+) are analyzed to give a 0 K bond dissociation energy of D(0)(Os(+)-H) = 2.45 ± 0.10 eV. Quantum chemical calculations are performed here at several levels of theory, with B3LYP approaches generally overestimating the experimental bond energy whereas results obtained using BHLYP and CCSD(T), coupled-cluster with single, double, and perturbative triple excitations, levels show good agreement. Theory also provides the electronic structures of these species and the potential energy surfaces for reaction. Results from the reactions with HD provide insight into the reaction mechanism and indicate that Os(+) reacts via a direct reaction. We also compare this third-row transition metal system with the first-row and second-row congeners, Fe(+) and Ru(+), and find that Os(+) reacts more efficiently with dihydrogen, forming a stronger M(+)-H bond. These differences can be attributed to the lanthanide contraction and relativistic effects.  相似文献   

2.
We present the kinetic energy dependence of reactions of the late third-row transition metal cation Ir(+) with H(2), D(2), and HD measured using a guided ion beam tandem mass spectrometer. A flow tube ion source produces Ir(+) ions in its electronic ground state term and primarily in the ground spin-orbit level. Corresponding state-specific reaction cross sections are obtained. The kinetic energy dependence of the cross sections for forming IrH(+) and IrD(+) are analyzed to give a 0 K bond dissociation energy of D(0)(Ir(+)-H) = 3.12 +/- 0.06 eV. Ab initio calculations at the B3LYP/HW+/6-311+G(3p), BHLYP/HW+/6-311+G(3p), and QCISD(T)/HW+/6-311+G(3p) levels performed here show reasonable agreement with the experimental bond energies and with the previous theoretical values available. Theory also provides the electronic structures of these species and the reactive potential energy surfaces. We also compare this third-row transition metal system with those of the first-row and second-row congeners Co(+) and Rh(+). We find that Ir(+) has a stronger M(+)-H bond, which can be explained by the lanthanide contraction and relativistic effects that alter the relative size of the valence s and d orbitals. Results from reactions with HD provide insight into the reaction mechanisms and indicate that Ir(+) reacts largely via an insertion mechanism, in contrast with the lighter group 9 metal ions Co(+) and Rh(+) which react via direct mechanisms.  相似文献   

3.
Reactions of the late third-row transition metal cation Au(+) with H(2), D(2), and HD are examined using guided ion beam tandem mass spectrometry. A flow tube ion source produces Au(+) in its (1)S (5d(10)) electronic ground state level. Corresponding state-specific reaction cross sections for forming AuH(+) and AuD(+) as a function of kinetic energy are obtained and analyzed to give a 0 K bond dissociation energy of D(0)(Au(+)-H) = 2.13 ± 0.11 eV. Quantum chemical calculations at the B3LYP∕HW+∕6-311+G(3p) and B3LYP∕Def2TZVPP levels performed here show good agreement with the experimental bond energy. Theory also provides the electronic structures of these species and the reactive potential energy surfaces. We also compare this third-row transition metal system with previous results for analogous reactions of the first-row and second-row congeners, Cu(+) and Ag(+). We find that Au(+) has a stronger M(+)-H bond, which can be explained by the lanthanide contraction and relativistic effects that alter the relative size of the valence s and d orbitals. Results from reactions with HD provide insight into the reaction mechanism and indicate that ground state Au(+) reacts largely via a direct mechanism, in concordance with the behavior of the lighter group 11 metal ions, but includes more statistical behavior than these metals as well.  相似文献   

4.
A guided ion beam tandem mass spectrometer is used to examine the kinetic energy dependence of reactions of the third-row transition metal cation, Re(+), with molecular hydrogen and its isotopologues. A flow tube ion source produces Re(+) in its (7)S(3) electronic ground state. Reaction with H(2), D(2), and HD forms Re H(+)(Re D(+)) in endothermic processes. Modeling of the endothermic reaction cross sections yields the 0 K bond dissociation energy of D(0)(Re(+)-H)=2.29+/-0.07 eV (221+/-6 kJ/mol). The experimental thermochemistry is consistent with ab initio calculations, performed here and in the literature. Theory also provides the electronic structures of these species and is used to examine the reactive potential energy surfaces. Results from reactions with HD provide insight into the reaction mechanisms and indicate that the late metal ion, Re(+), reacts largely via a statistical mechanism. This is consistent with the potential energy surfaces which locate a stable Re H(2) (+)((5)B(2)) complex. Results for this third-row transition metal system are compared with the first-row congener (Mn(+)) and found to have much higher reactivity towards dihydrogen and stronger M(+)-H bonds. These differences can be attributed to efficient coupling among surfaces of different spin along with lanthanide contraction and relativistic effects.  相似文献   

5.
The potential energy surface for activation of methane by the third-row transition metal cation, Au+, is studied experimentally by examining the kinetic energy dependence of this reaction using guided ion beam tandem mass spectrometry. A flow tube ion source produces Au+ primarily in its 1S0 (5d10) electronic ground state level but with some 3D (and perhaps higher lying) excited states that can be completely removed by a suitable quenching gas (N2O). Au+ (1S0) reacts with methane by endothermic dehydrogenation to form AuCH2+ as well as C-H bond cleavage to yield AuH+ and AuCH3+. The kinetic energy dependences of the cross sections for these endothermic reactions are analyzed to give 0 K bond dissociation energies (in eV) of D0(Au+ - CH2) = 3.70 +/- 0.07 and D0(Au+ -CH3) = 2.17 +/- 0.24. Ab initio calculations at the B3LYPHW + /6-311++G(3df,3p) level performed here show good agreement with the experimental bond energies and previous theoretical values available. Theory also provides the electronic structures of the product species as well as intermediates and transition states along the reactive potential energy surface. Surprisingly, the dehydrogenation reaction does not appear to involve an oxidative addition mechanism. We also compare this third-row transition metal system with the first-row and second-row congeners, Cu+ and Ag+. Differences in thermochemistry can be explained by the lanthanide contraction and relativistic effects that alter the relative size of the valence s and d orbitals.  相似文献   

6.
The kinetic-energy dependence of the reactions of Mo(+) ((6)S) with methane has been studied using guided ion beam mass spectrometry. No exothermic reactions are observed in this system, as also found previously, but efficient dehydrogenation occurs at slightly elevated energies. At higher energies, MoH(+) dominates the product spectrum and MoC(+), MoCH(+), and MoCH(3)(+) are also observed. Modeling of the endothermic reaction cross sections yields the 0 K bond dissociation energies (in eV) of D(0)(Mo(+)-C) = 4.55 +/- 0.19, D(0)(Mo(+)-CH) = 5.32 +/- 0.14, D(0)(Mo(+)-CH(2)) = 3.57 +/- 0.10, and D(0)(Mo(+)-CH(3)) = 1.57 +/- 0.09. The results for Mo(+) are compared with those for the first- and third-row transition-metal congeners, Cr(+) and W(+), and the differences in behavior and mechanism are discussed. Theoretical results are used to elucidate the geometric and electronic structures of all product ions as well as the complete potential-energy surface for reaction. The efficiency of the coupling between the sextet and quartet spin surfaces is also quantified.  相似文献   

7.
The reactions of Group 8, 9 and 10 monocations with phosphane were studied under single-collision conditions in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Fe(+) is completely unreactive, Co(+) reacts slowly and shows both adduct formation and P-H bond activation, and Ni(+) reacts slowly as well but shows adduct formation only. In contrast to their first-row congeners, the investigated second- and third-row transition metal monocations show facile P-H bond activations. Remarkably, extensive dehydrogenations of the collision complexes yield cations MPH(+), MP(2) (+), MP(3)H(+), MP(4) (+) and so on. Exceptional behaviour is shown by the two d(9) cations palladium (whose "dehydrogenation power" is rather limited) and platinum (which gives rise to a great manifold of only partially dehydrogenated species as well). Collision-induced dissociation experiments suggest that P(2) and PH units are formed as ligands.  相似文献   

8.
The kinetic energy dependences of the reactions of Ni+(n) (n=2-16) with CD(4) are studied in a guided ion beam tandem mass spectrometer over the energy range of 0-10 eV. The main products are hydride formation Ni(n)D+, dehydrogenation to form Ni(n)CD+(2), and double dehydrogenation yielding Ni(n)C+. These primary products decompose at higher energies to form Ni(n)CD+, Ni(n-1)D+, Ni(n-1)C+, Ni(n-1)CD+, and Ni(n-1)CD+(2). Ni(n)CD(2) (+) (n=5-9) and Ni(n-1)CD(2) (+) (n > or =4) are not observed. In general, the efficiencies of the single and double dehydrogenation processes increase with cluster size. All reactions exhibit thresholds, and cross sections for the various primary and secondary reactions are analyzed to yield reaction thresholds from which bond energies for nickel cluster cations to C, CD, CD(2), and CD(3) are determined. The relative magnitudes of these bond energies are consistent with simple bond order considerations. Bond energies for larger clusters rapidly reach relatively constant values, which are used to estimate the chemisorption energies of the C, CD, CD(2), and CD(3) molecular fragments to nickel surfaces.  相似文献   

9.
An ion-beam apparatus is employed to study the reaction of Ni+ with H2, HD, and D2 as a function of kinetic energy. These reactions lead to the endothermic formation of NiH+, NiH+ and NiD+, and NiD+, respectively. Interpretation of the threshold for these processes yields the average bond energies, D0(Ni+H) = 1.86 ± 0.09 eV and D0(Ni+D) = 1.90 ± 0.14 eV. The total reaction cross sections for all three systems are similar; however, a striking isotope effect is observed for Ni+ reacting with HD. The dependence of the cross sections on relative kinetic energy is discussed in terms of simple models for reaction.  相似文献   

10.
The charge transfer and deuterium ion transfer reactions between D(2)O(+) and C(2)H(4) have been studied using the crossed beam technique at relative collision energies below one electron volt and by density functional theory (DFT) calculations. Both direct and rearrangement charge transfer processes are observed, forming C(2)H(4) (+) and C(2)H(3)D(+), respectively. Independent of collision energy, deuterium ion transfer accounts for approximately 20% of the reactive collisions. Between 22 and 36 % of charge transfer collisions occur with rearrangement. In both charge transfer processes, comparison of the internal energy distributions of products with the photoelectron spectrum of C(2)H(4) shows that Franck-Condon factors determine energy disposal in these channels. DFT calculations provide evidence for transient intermediates that undergo H/D migration with rearrangement, but with minimal modification of the product energy distributions determined by long range electron transfer. The cross section for charge transfer with rearrangement is approximately 10(3) larger than predicted from the Rice-Ramsperger-Kassel-Marcus isomerization rate in transient complexes, suggesting a nonstatistical mechanism for H/D exchange. DFT calculations suggest that reactive trajectories for deuterium ion transfer follow a pathway in which a deuterium atom from D(2)O(+) approaches the pi-cloud of ethylene along the perpendicular bisector of the C-C bond. The product kinetic energy distributions exhibit structure consistent with vibrational motion of the D-atom in the bridged C(2)H(4)D(+) product perpendicular to the C-C bond. The reaction quantitatively transforms the reaction exothermicity into internal excitation of the products, consistent with mixed energy release in which the deuterium ion is transferred in a configuration in which both the breaking and the forming bonds are extended.  相似文献   

11.
A thorough theoretical investigation of the reactions between S(1D) and various hydrogen isotopomers (H2, D2, and HD) has been carried out using a recent ab initio potential energy surface. State-resolved integral and differential cross sections, thermal rate constants, and their dependence on energy or temperature were obtained from quantum mechanical capture probabilities within a statistical model. For comparison, the J=0 reaction probabilities were also computed using an exact wave packet method. The statistical results are in excellent agreement with available exact differential and integral cross sections. The comparison with experimental results shows that the agreement is reasonably good in general, but some significant differences exist, particularly for the SD/SH branching ratio in the S(1D)+HD reaction.  相似文献   

12.
Reactions of protonated water clusters, H(H(2)O)(n) (+) (n=1-4) with D(2)O and their "mirror" reactions, D(D(2)O)(n) (+) (n=1-4) with H(2)O, are studied using guided-ion beam mass spectrometry. Absolute reaction cross sections are determined as a function of collision energy from thermal energy to over 10 eV. At low collision energies, we observe reactions in which H(2)O and D(2)O molecules are interchanged and reactions where H-D exchange has occurred. As the collision energy is increased, the H-D exchange products decrease and the water exchange products become dominant. At high collision energies, processes in which one or more water molecules are lost from the reactant ions become important, with simple collision-induced dissociation processes, i.e., those without H-D exchange, being dominant. Threshold energies of endothermic channels are measured and used to determine binding energies of the proton bound complexes, which are consistent with those determined by thermal equilibrium measurements and previous collision-induced dissociation studies. A kinetic scheme that relies only on the ratio of isomerization and dissociation rate constants successfully accounts for the kinetic energy dependence observed in the branching ratios for H-D and water exchange products in all systems. Rice-Ramsperger-Kassel-Marcus theory and ab initio calculations confirm the feasibility and establish the details of this kinetic model.  相似文献   

13.
The interaction of the alkali metal cations, Li+, Na+, and K+, with the amino acid proline (Pro) and its four- and six-membered ring analogues, azetidine-2-carboxylic acid (Aze) and pipecolic acid (Pip), are examined in detail. Experimentally, threshold collision-induced dissociation of the M+(L) complexes, where M = Li, Na, and K and L = Pro, Aze, and Pip, with Xe are studied using a guided ion beam tandem mass spectrometer. From analysis of the kinetic energy dependent cross sections, M(+)-L bond dissociation energies are measured. These analyses account for unimolecular decay rates, internal energy of reactant ions, and multiple ion-molecule collisions. Ab initio calculations for a number of geometric conformations of the M+(L) complexes were determined at the B3LYP/6-311G(d,p) level with single-point energies calculated at MP2(full), B3LYP, and B3P86 levels using a 6-311+G(2d,2p) basis set. Theoretical bond energies show good agreement with the experimental bond energies, which establishes that the zwitterionic form of the alkali metal cation/amino acid, the lowest energy conformation, is formed in all cases. Despite the increased conformational mobility in the Pip systems, the Li+, Na+, and K+ complexes of Pro show higher binding energies. A meticulous examination of the zwitterionic structures of these complexes provides an explanation for the stability of the five-membered ring complexes.  相似文献   

14.
The kinetic-energy-dependent cross sections for the reactions of Co(n)+ (n = 2-16) with D2 are measured as a function of kinetic energy over a range of 0-8 eV in a guided ion-beam tandem mass spectrometer. The observed products are Co(n) D+ for all clusters and Co(n)D2+ for n = 4,5,9-16. Reactions for the formation of Co(n)D+ (n = 2-16) and Co9D2+ are observed to exhibit thresholds, whereas cross sections for the formation of Co(n)D2+ (n = 4,5,10-16) exhibit exothermic reaction behavior. The Co(n)+-D bond energies as a function of cluster size are derived from the threshold analysis of the kinetic-energy dependence of the endothermic reactions and are compared to previously determined metal-metal bond energies, D0(Co(n)+-Co). The bond energies of Co(n)+-D generally increase as the cluster size increases, and roughly parallel those for Co(n)+-Co for clusters n > or = 4. These trends are explained in terms of electronic and geometric structures for the Co(n)+ clusters. The bond energies of Co(n)+-D for larger clusters (n > or = 10) are found to be very close to the value for chemisorption of atomic hydrogen on bulk-phase cobalt. The rate constants for D2 chemisorption on the cationic clusters are compared with the results from previous work on cationic and neutral cobalt clusters.  相似文献   

15.
Time-independent quantum mechanical (TIQM) approach (helicity basis truncated at k = 2) has been used for computing differential and integral cross sections for the exchange reaction H- + D2 (v = 0, j = 0-4) --> HD + D- and D- + H2 (v = 0, j = 0-3) --> HD + H- in three dimensions on an accurate ab initio potential energy surface. It is shown that the j-weighted differential reaction cross section values are in good agreement with the experimental results reported by Zimmer and Linder at four different relative translational energies (Etrans = 0.55, 0.93, 1.16 and 1.48 eV) for (H-, D2) and at one relative translational energy (Etrans = 0.6 eV) by Haufler et al. for both (H-, D2) and (D-, H2) collisions. The j-weighted integral reaction cross section values are in good agreement with the crossed beam measurements by Zimmer and Linder in the Etrans range 0.5-1.5 eV and close to the guided ion beam results by Haufler et al. for (H-, D2) in the range 0.8-1.2 eV. Time-dependent quantum mechanical (TDQM) results obtained using centrifugal sudden approximation are reported in the form of integral reaction cross section values as a function of Etrans in the range 0.3-3.0 eV for both reactions in three dimensions on the same potential energy surface. The TDQM reaction cross section values decline more sharply than the TIQM results with increase in the initial rotational quantum number (j) for the D2 molecules in their ground vibrational state (v = 0) for (H-, D2) collisions. The computed j-weighted reaction cross section values are in good agreement with the experimental results reported by Zimmer and Linder for (H-, D2) collisions and guided ion beam results by Haufler et al. for both (H-, D2) and (D-, H2) collisions for energies below the threshold for electron detachment channel.  相似文献   

16.
An extensive set of experimental measurements on the dynamics of the H(+) + D(2) and D(+) + H(2) ion-molecule reactions is compared with the results of quantum mechanical (QM), quasiclassical trajectory (QCT), and statistical quasiclassical trajectory (SQCT) calculations. The dynamical observables considered include specific rate coefficients as a function of the translational energy, E(T), thermal rate coefficients in the 100-500 K temperature range. In addition, kinetic energy spectra (KES) of the D(+) ions reactively scattered in H(+) + D(2) collisions are also presented for translational energies between 0.4 eV and 2.0 eV. For the two reactions, the best global agreement between experiment and theory over the whole energy range corresponds to the QCT calculations using a gaussian binning (GB) procedure, which gives more weight to trajectories whose product vibrational action is closer to the actual integer QM values. The QM calculations also perform well, although somewhat worse over the more limited range of translational energies where they are available (E(T) < 0.6 eV and E(T) < 0.2 eV for the H(+) + D(2) and D(+) + H(2) reactions, respectively). The worst agreement is obtained with the SQCT method, which is only adequate for low translational energies. The comparison between theory and experiment also suggests that the most reliable rate coefficient measurements are those obtained with the merged beams technique. It is worth noting that none of the theoretical approaches can account satisfactorily for the experimental specific rate coefficients of H(+) + D(2) for E(T)≤ 0.2 eV although there is a considerable scatter in the existing measurements. On the whole, the best agreement with the experimental laboratory KES is obtained with the simulations carried out using the state resolved differential cross sections (DCSs) calculated with the QCT-GB method, which seems to account for most of the observed features. In contrast, the simulations with the SQCT data predict kinetic energy spectra (KES) considerably cooler than those experimentally determined.  相似文献   

17.
The interactions of cesium cations with five amino acids (AA) including glycine (Gly), proline (Pro), serine (Ser), threonine (Thr), and cysteine (Cys) are examined in detail. Experimentally, the bond dissociation energies (BDEs) are determined using threshold collision-induced dissociation of the Cs(+)(AA) complexes with xenon in a guided ion beam tandem mass spectrometer. Analyses of the energy-dependent cross sections include consideration of unimolecular decay rates, internal energy of the reactant ions, and multiple ion-neutral collisions. Bond dissociation energies (0 K) of 93.3 ± 2.5, 107.9 ± 4.6, 102.3 ± 4.1, 105.4 ± 4.3, and 96.8 ± 4.2 kJ/mol are determined for complexes of Cs(+) with Gly, Pro, Ser, Thr, and Cys, respectively. Quantum chemical calculations are conducted at the B3LYP, B3P86, MP2(full), and M06 levels of theory with geometries and zero-point energies calculated at the B3LYP level using both HW*/6-311+G(2d,2p) and def2-TZVPPD basis sets. Results obtained using the former basis sets are systematically low compared to the experimental bond energies, whereas the latter basis sets show good agreement. For Cs(+)(Gly), theory predicts the ground-state conformer has the cesium cation binding to the carbonyl group of the carboxylic acid. For Cs(+)(Pro), the secondary nitrogen accepts the carboxylic acid hydrogen to form the zwitterionic structure, and the metal cation binds to both oxygens. Cs(+)(Ser), Cs(+)(Thr), and Cs(+)(Cys) are found to have tridentate binding at the MP2(full) level, whereas the density functional approaches slightly prefer bidentate binding of Cs(+) at the carboxylic acid moiety. Comparison of these results to those for the smaller alkali cations provides insight into the trends in binding affinities and structures associated with metal cation variations.  相似文献   

18.
Threshold collision-induced dissociation of M(+)(adenine) with xenon is studied using guided ion beam mass spectrometry. M(+) includes all 10 first-row transition metal ions: Sc(+), Ti(+), V(+), Cr(+), Mn(+), Fe(+), Co(+), Ni(+), Cu(+), and Zn(+). For the systems involving the late metal ions, Cr(+) through Cu(+), the primary product corresponds to endothermic loss of the intact adenine molecule, whereas for Zn(+), this process occurs but to form Zn + adenine(+). For the complexes to the early metal ions, Sc(+), Ti(+), and V(+), intact ligand loss competes with endothermic elimination of purine and of HCN to form MNH(+) and M(+)(C(4)H(4)N(4)), respectively, as the primary ionic products. For Sc(+), loss of ammonia is also a prominent process at low energies. Several minor channels corresponding to formation of M(+)(C(x)H(x)N(x)), x = 1-3, are also observed for these three systems at elevated energies. The energy-dependent collision-induced dissociation cross sections for M(+)(adenine), where M(+) = V(+) through Zn(+), are modeled to yield thresholds that are directly related to 0 and 298 K bond dissociation energies for M(+)-adenine after accounting for the effects of multiple ion-molecule collisions, kinetic and internal energy distributions of the reactants, and dissociation lifetimes. The measured bond energies are compared to those previously studied for simple nitrogen donor ligands, NH(3) and pyrimidine, and to results for alkali metal cations bound to adenine. Trends in these results and theoretical calculations on Cu(+)(adenine) suggest distinct differences in the binding site propensities of adenine to the alkali vs transition metal ions, a consequence of s-dsigma hybridization on the latter.  相似文献   

19.
A systematic experimental and theoretical investigation of the influence of reactant energy on the reactivity of (V(2)O(5))(n)=1,2(+) clusters with ethylene (Justes, D. R.; Mitri?, R.; Moore, N. A.; Bonaci?-Koutecky, V.; Castleman, A. W., Jr. J. Am. Chem. Soc., 2003, 125, 6289) provided evidence of the rate controlling steps in the reaction. Herein, we present further experimental and theoretical evidence for our recently proposed radical cation mechanism for oxygen atom transfer from (V(2)O(5))(n)=1,2(+) clusters to ethylene. In particular the results of ab initio molecular dynamics simulations are found to further support the radical cation mechanism. Experimental reaction cross sections at the zero pressure limit and rate coefficients show that the energy dependence of the reaction cross section is in accord with the Langevin formula. Evidence is presented that ion-molecule association is the rate determining step, whereas subsequent hydrogen transfer and formation of acetaldehyde proceed without significant barriers. We propose a kinetic model for the reaction cross section that fully accounts for the experimental findings. The model offers the prospect of elucidating the details of the general reaction mechanisms through a study of the energy dependence of the reaction cross sections.  相似文献   

20.
A chelating ion exchange resin was synthesized from 8-hydroxyquinoline and catechol using formaldehyde as a cross linking agent at 120 ± 2 °C in DMF solution. The resin was characterized by FTIR and elemental analysis. The morphology of the synthesized resin was studied by optical photograph and scanning electron microscopy (SEM). Various kinetic parameters such as energy of activation (Ea), enthalpy of activation (H?), entropy of activation (S?), free energy of activation (G?), order of reaction (n) and pre-exponential factor (A) of various steps of thermal decomposition have been calculated from thermogravimertic results. The physico-chemical properties of the resin have been studied. The total cation exchange capacity was measured and effect of pH and metal ion concentration on ion exchange capacity were studied. The rate of cation exchange reactions and distribution coefficient values in tartaric acid media at different pH were also studied using batch equilibration method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号