首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
High probabilities of energy transfer from translation to molecular rotations are observed in the scattering of n-D(2) from LiF(001) at an incident beam energy of 85.3 meV. For the 100 incidence direction, close-coupling calculations yield ratios of the rotationally inelastic (j=0-->2) and (j=1-->3) peaks to the rotationally elastic specular peaks (G=0) that are in reasonable agreement with experiment, as are the ratios of the rotationally elastic diffraction peak intensities to the specular peak intensities. The agreement between theory and experiment is also quite good for the rotationally inelastic diffractive (-1-1) transitions for (j=1-->3), but rather poor for (j=0-->2). The calculations show that the interaction between the electrostatic field of the surface ions and the quadrupole moment of the D(2) molecule efficiently promotes the (j=0-->2) and (j=1-->3) transitions. If this electrostatic interaction is excluded from the potential model, the ratios of the (j=0-->2) and (j=1-->3) rotationally inelastic peaks to the corresponding specular peaks show a large discrepancy with experiment, underlining the importance of this interaction. The close-coupling calculations show a somewhat worse agreement with experiment for the 110 incidence direction. In particular, the sharp peaks observed experimentally in the ratios of the peak intensities of the rotationally inelastic G=0 (j=0-->2) and (j=1-->3) to the rotationally elastic G=0 transitions as a function of incident angle are not reproduced by the calculations. The theoretical ratios of the peak intensities of the rotationally elastic diffraction to G=0 transitions are shifted to lower incidence angles with respect to experiment. The rotationally inelastic diffractive (-10) transitions present an interesting resonance phenomenon for the (j=0-->2) rotational transition. This resonance is predicted by both theory and experiment, although at rather different incident angles.  相似文献   

2.
The problem of vibrationally and rotationally inelastic scattering processes in H2 + Ar for nonzero impact parameter b has been investigated in the collision velocity range of 106–107 cm/sec by use of the sudden approximation. The simultaneous vibrational (0 → 1) and rotational (00 → 00, 20, or 40) transitions were studied. For υ > 3 x 106 cm/sec, the probabilities for b/l = 1.0 are found to be very large compared with those for b = 0, where l is the hard-sphere collision diameter; for b/l > 1.0, the probabilities decrease very rapidly with increasing b. The results show that nonzero-b collisions must be included in the calculation of simultaneous transition processes in H2 + Ar at higher collision velocities.  相似文献   

3.
We present a detailed experimental and theoretical study of elastic and rotationally inelastic diffraction of D(2) from NiAl(110) in the energy range 85-150 meV. The experiments were performed using a high-resolution, fixed angle geometry apparatus. Quantum and classical dynamical calculations were performed by using a six-dimensional potential energy surface constructed upon interpolation of a set of DFT (density functional theory) data. We show that, although elastic diffraction peak intensities are accurately described by theory in the whole range of incidence energies and angles explored, significant discrepancies are obtained for RID peaks, especially for those involving rotational initial states with j(i) > 0. Possible reasons for this discrepancy are discussed.  相似文献   

4.
Six-dimensional quantum dynamical and quasiclassical trajectory (QCT) calculations are reported for the reaction and vibrationally inelastic scattering of (v = 0,1,j = 0) H(2) scattering from Cu(110), and for the reaction and rovibrationally elastic and inelastic scattering of (v = 1,j = 1) H(2) scattering from Cu(110). The dynamics results were obtained using a potential energy surface obtained with density functional theory using the PW91 functional. The reaction probabilities computed with quantum dynamics for (v = 0,1,j = 0) were in excellent agreement with the QCT results obtained earlier for these states, thereby validating the QCT approach to sticking of hydrogen on Cu(110). The vibrational de-excitation probability P(v=1,j = 0 --> v = 0) computed with the QCT method is in remarkably good agreement with the quantum dynamical results for normal incidence energies E(n) between 0.2 and 0.6 eV. The QCT result for the vibrational excitation probability P(v = 0,j = 0 --> v = 1) is likewise accurate for E(n) between 0.8 and 1 eV, but the QCT method overestimates vibrational excitation for lower E(n). The QCT method gives probabilities for rovibrationally (in)elastic scattering, P(v = 1,j = 1 --> v('),j(')), which are in remarkably good agreement with quantum dynamical results. The rotationally averaged, initial vibrational state-selective reaction probability obtained with QCT agrees well with the initial vibrational state-selective reaction probability extracted from molecular beam experiments for v = 1, for the range of collision energies for which the v=1 contribution to the measured total sticking probability dominates. The quantum dynamical probabilities for rovibrationally elastic scattering of (v = 1,j = 1) H(2) from Cu(110) are in good agreement with experiment for E(n) between 0.08 and 0.25 eV.  相似文献   

5.
The quantum mechanical close-coupling formalism is applied to the study of elastic and rotationally inelastic Li+ + H2 collisions making use of the Kutzelnigg-Staemmler-Hoheisel potential energy surface. Integral and differential cross sections for j = 0 → 0 and j = 0 → 2 are obtained in the collision energy range 0.2 to 0.9 eV and for j = 1 → 1 and j = 1 → 3 at 0.6 eV. A rainbow structure is observed in both the elastic and inelastic angular distributions and a quenching of the fast oscillations is found in the cross sections for j = 1 initially compared to the case j = 0 initially. At 0.6 eV. the calculated quantum mechanical angular distributions are compared to those from a classical trajectory calculation using the same surface and to the experimental ones. The dynamics of rotational excitation in the Li+ + H2 system is contrasted to rotational excitation in systems for which the atom-diatom interaction is predominantly repulsive.  相似文献   

6.
Classical trajectory calculations of the partial opacities and integral cross sections for rotationally inelastic collisions of HF—HF were carried out for the j1 = 0,j2 = 0 → (11), (02), (22) transitions at initial relative translational energies of 500, 1000, and 8000 cm?1 and for the (11) → (02) transition at 1000 cm?1. Three different methods of relating the initial and final quantum rotational levels to classical distributions were used. The results were compared to the quantum calculations of DePristo and Alexander. It was found that the classical method using a random distribution of initial rotational energies was in poor agreement with the quantum results, while the other two methods which assigned definite classical energies to the quantum levels were in good agreement with the quantum results.  相似文献   

7.
The energy transfer between Kr atoms and highly vibrationally excited, rotationally cold biphenyl in the triplet state was investigated using crossed-beam/time-of-flight mass spectrometer/time-sliced velocity map ion imaging techniques. Compared to the energy transfer of naphthalene, energy transfer of biphenyl shows more forward scattering, less complex formation, larger cross section for vibrational to translational (V→T) energy transfer, smaller cross section for translational to vibrational and rotational (T→VR) energy transfer, larger total collisional cross section, and more energy transferred from vibration to translation. Significant increase in the large V→T energy transfer probabilities, termed supercollisions, was observed. The difference in the energy transfer of highly vibrationally excited molecules between rotationally cold naphthalene and rotationally cold biphenyl is very similar to the difference in the energy transfer of highly vibrationally excited molecules between rotationally cold naphthalene and rotationally hot naphthalene. The low-frequency vibrational modes with out-of-plane motion and rotationlike wide-angle motion are attributed to make the energy transfer of biphenyl different from that of naphthalene.  相似文献   

8.
The energy transfer between Kr atoms and highly vibrationally excited, rotationally cold phenanthrene and diphenylacetylene in the triplet state was investigated using crossed-beam/time-of-flight mass spectrometer/time-sliced velocity map ion imaging techniques. Compared to the energy transfer between naphthalene and Kr, energy transfer between phenanthrene and Kr shows a larger cross-section for vibrational to translational (V → T) energy transfer, a smaller cross-section for translational to vibrational and rotational (T → VR) energy transfer, and more energy transferred from vibration to translation. These differences are further enlarged in the comparison between naphthalene and diphenylacetylene. In addition, less complex formation and significant increases in the large V → T energy transfer probabilities, termed supercollisions in diphenylacetylene and Kr collisions were observed. The differences in the energy transfer between these highly vibrationally excited molecules are attributed to the low-frequency vibrational modes, especially those vibrations with rotation-like wide-angle motions.  相似文献   

9.
He-LiH体系转动非弹性碰撞的理论研究   总被引:5,自引:3,他引:5  
在单双迭代耦合簇CCSD(T)势能面的基础上,运用密耦方法讨论了He-LiH体系的转动非弹性碰撞.计算结果表明,对LiH分子j=0→j′跃迁,跃迁截面主要由各向异性的短程相互作用和长程的“软”排斥共同作用的结果,未见明显的长程吸引势贡献.态-态跃迁总截面表现出振荡结构,长程“软”排斥分波只对j=0向j′=1、2、3的跃迁总截面有较大贡献,而j′≥ 4跃迁的积分截面则几乎由各向异性的短程部分贡献.  相似文献   

10.
While Cl + H(2) reactive collisions have been a subject of numerous experimental and theoretical studies, inelastic collisions leading to rotational energy transfer and/or vibrational excitation have been largely ignored. In this work, extensive quantum mechanical calculations covering the 0.5-1.5 eV total energy range and various initial rovibrational states have been carried out and used to perform a joint study of inelastic and reactive Cl + H(2) collisions. Quasiclassical trajectories calculations complement the quantum mechanical results. The analysis of the inelastic transition probabilities has revealed the existence of two distinct dynamical regimes that correlate with low and high impact parameters, b, and are neatly separated by glory scattering. It has been found that while high-b collisions are mainly responsible for |Δj| = 2 transitions which dominate the inelastic scattering, they are very inefficient in promoting higher |Δj| transitions. The effectiveness of this type of collision also drops with rotational excitation of H(2). In contrast, reactive scattering, that competes with |Δj|?> 2 inelastic transitions, is exclusively caused by low-b collisions, and it is greatly favored when the reactants get rotationally excited. Previous studies focusing on the reactivity of the Cl + H(2) system established that the van der Waals well located in the entrance channel play a key role in determining the mechanism of the collisions. Our results prove this to be also a case for inelastic processes, where the origin of the double dynamical regime can be traced back to the influence exerted by this well that shapes the topology of the entrance channel of the Cl-H(2) system.  相似文献   

11.
The Lie algebraic approach of Alhassid and Levine [Phys. Rev. A 18 , 89 (1978)] is applied to the molecule–surface scattering. Specially, the diffractionally and rotationally inelastic scattering of a diatomic molecule from a solid surface is dealt with. Within the framework of the close-coupling method, we construct a Hamiltonian for the scattering system and use it to generate a dynamical algebra h6. By solving equations of motion for the group parameters, the scattering wave functions near the surface are obtained. Computed transition probabilities of diffractively and rotationally inelastic scattering of H2 from LiF(001) surface with the use of Lie algebraic method are seen to agree well with the coupled-channel calculations. The Lie algebraic method thus appears to have a wide range of validity for describing the dynamics of gas–surface scattering. © 1997 John Wiley & Sons, Inc. Int J Quant Chem 63: 981–989, 1997  相似文献   

12.
NH_3Ã(~1Ã″_2)是个快速预解离态,寿命约10~(-13)s。本文研究了以这个态为中间共振态的2+1+1双色双共振多光子电离过程。我们首先获得了NH_2和ND_3两分子X→Ã→C′NH_3~+(或ND_3~+)+e跃迁的多光子电离光增, 求出了ND_3C′v_2=0, 1两能级的转动常数,然后通过合理的实验设计, 得到了NH_3分子X→Ã跃迁转动线的增益线型。  相似文献   

13.
A fully converged close coupling study is performed of the collinear (H+ + H2) system on the lower potential energy surface. The surface is derived by the DIMZO (diatomic in molecules-zero overlap) method. Transition probabilities for the reactions: H+ + H2 (ν = 0, 1) → H2 (ν′) + H+; ν′ = 0,..., 7 are given for a number of total energies in the range from 1 eV to 3 eV. It is found that for this energy region the transition ν = 0 → ν′ = 0 is the most preferential. This fact leads us to believe that addition of the upper surface will have a minor effect on the calculated probabilities of transitions from ν = 0 in the above-mentioned energy range.  相似文献   

14.
We report the observation of collisional narrowing of the Q branch of the Raman spectrum for the (000) → (100) transition in CO2 at very low pressures. The minimum linewidth is reached at ≈250 Torr. An estimate for the difference in rotational constants of the (100) state and the ground state is obtained. The narrowing of the linewidth and the changes in line-shape are interpreted in terms of velocity changing collisions and rotationally inelastic collisions between the CO2 molecules.  相似文献   

15.
We present quasiclassical dynamics calculations of H2 and D2 scattering by the NiAl(110) surface using a recently proposed six-dimensional potential-energy surface (PES) obtained from density-functional theory calculations. The results for dissociative adsorption confirm several experimental predictions using (rotationally hot) D2 beams, namely, the existence of a dissociation barrier, the small isotopic effect, the importance of vibrational enhancement, and the existence of normal energy scaling. The latter conclusion shows that normal energy scaling is not necessarily associated with weak corrugated surfaces. The results for rotationally elastic and inelastic diffractions are also in reasonable agreement with experiment, but they show that many more diffractive transitions are responsible for the observed structures than previously assumed. This points to the validity of the PES recently proposed [P. Riviere, H. F. Busnengo, and F. Martin, J. Chem. Phys. 121, 751 (2004)] to describe dissociative adsorption as well as rotationally elastic and inelastic diffractions in the H2NiAl(110) system.  相似文献   

16.
We present the results of close-coupling calculations of mj-dependent differential and integral cross sections forj1 = 2 → j2 = 2 rotationally elastic ArN2 collisions. Two potential surfaces were used with differing long-and short-range anisotropies. If the anisotropy is long-ranged the scattering of an isotropic beam results in a significant angle dependent polarization of the elastically scattered products. To a certain extent this reflects a selective loss of mj-state population due to rotationally inelastic transitions. For quantization along the initial relative velocity vector or perpendicular to the scattering plane, the depolarization of an initially mj-state selected beam vanishes in the forward direction and is significantly less than the statistical limit at all angles, which indicates a dynamical conservation of the direction of the molecular rotational angular momentum. By contrast, in the helicity frame depolarization is much more pronounced. The oscillatory structure present in the rotationally inelastic differential cross section does not appear to be quenched by the interference between various mm′ transitions.  相似文献   

17.
以组成为n(SiO_2)∶n(Al2O3)∶n(CaO)∶n(CaF_2)∶n(NaF)∶n(B_2O_3)=40∶20∶10∶10∶15∶5的微晶发光玻璃为基质,采用一步析晶法制备了CaF_2析晶相.利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、X射线能量散射谱仪(EDS)和荧光分光光度计等对样品结构、组成及光谱性能进行分析,探讨了Eu3+掺杂浓度和析晶温度对微晶玻璃发光性能的影响.实验结果表明,在850℃下处理可获得分布均匀、粒径尺寸为200 nm的CaF_2析晶相,微晶玻璃的发光强度是基质玻璃的1.7倍.微晶玻璃的发射光谱在590,614,652和700 nm出现发射峰,分别对应Eu3+的5D0-7FJ(J=1,2,3,4)跃迁.通过对5D0-7F1和5D0-7F2跃迁强度的分析以及Judd-Ofelt理论参数Ω2值的计算可知Eu3+周围晶体场在析晶前后对称性发生变化.机理分析表明,析晶处理后Eu3+从高声子能量的Si-O环境进入低声子能量的Ca-F环境中,说明Eu3+可作为荧光探针研究微晶玻璃晶体结构的变化.  相似文献   

18.
Incoherent inelastic neutron scattering spectra for the three crystalline polymorphs (alpha- P2(1)/n, beta- P2(1), gamma- P3(1)) of glycine (C2H5NO2) at temperatures between 5 and 300 K (using the time-of-flight (ToF) spectrometer NEAT at HMI) and at pressures from ambient up to 1 GPa (using the ToF spectrometer IN6 at the ILL) were measured. Significant differences in the band positions and their relative intensities in the density of states (DoS) were observed for the three polymorphs, which can be related to the different intermolecular interactions. The mean-squared displacement, (T), dependence reveals a change in dynamic properties at about the same temperature (150 K) for all the three forms, which can be related to the reorientation of the NH3 group. Besides, a dynamic transition in beta-glycine at about 230-250 K on cooling was also observed, supporting previously obtained adiabatic calorimetry data. This behavior is similar to that already observed in amorphous solids, on approaching the glass transition temperatures, as well as in biological systems. It suggests the onset of degrees of freedom most likely related to transitions between slightly different conformational orientations. The DoS obtained as a function of pressure has confirmed the stability of the alpha-form with respect to pressure and also depicted a sign of the previously reported reversible beta-beta' glycine phase transition in between 0.6 and 0.8 GPa. Moreover, a remarkable kinetic effect in the pressure-induced phase transition in gamma-glycine was revealed. After the sample was kept at 0.8 GPa for an hour in the neutron beam, an irreversible transition into a high-pressure form (different from the beta'-form) occurred, although previously in X-Ray diffraction and Raman spectroscopy experiments a gamma- to delta-glycine phase transition was observed above 3.5 GPa only.  相似文献   

19.
The dynamical Lie algebraic (DLA) method is used to describe statistical mechanics of energy transfer in rotationally inelastic molecule–surface scattering. Statistical average values of an observable for the scattering system are calculated in terms of density operator formalism in statistical mechanics. Employing a cubic expansion procedure of molecule–surface interaction potential leads to generation of a dynamical Lie algebra. Thus these statistical average values as a function of the group parameters can be obtained analytically in this formulation. The group parameters can be found from solving a set of coupled nonlinear differential equations. The DLA method, which has no need for determination of transition probabilities in advance as made routinely in the calculation, offers an efficient alternative to the method for computing the statistical average values. This method is much less computationally intensive because most of calculations can be analytically carried out. The average final rotational energies and their dependence on the main dynamic variables and the average interaction potential are presented for the rotationally inelastic scattering of NO molecules from a flat, static Ag(111) surface. Direct comparison is made between the predictions of this model calculation and experiment. The model reproduces well the degree of rotational excitation and correlation between the average final translational and the average rotational energies. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

20.
The effect of kinematic parameters (relative velocity v(rel), relative momentum p(rel), and relative energy E(rel)) on the rotational and rovibrational inelastic scatterings of 0(0)K(0)S(1) trans-glyoxal has been investigated by colliding glyoxal seeded in He or Ar with target gases D2, He, or Ne at different scattering angles in crossed supersonic beams. The inelastic spectra for target gases He and D2 acquired with two different sets of kinematic parameters revealed no significant differences. This result shows that kinematic factors have the major influence in the inelastic scattering channel competition whereas the intermolecular potential energy surface plays only a secondary role. The well-defined exponential dependence of relative cross sections on exchanged angular momentum identifies angular momentum as the dominant kinematic factor in collision-induced rotationally and rovibrationally inelastic scatterings. This is supported by the behavior of the relative inelastic cross sections data in a "slope-p(rel)" representation. In this form, the data show a trend nearly independent of the target gas identity. Representations involving E(rel) and v(rel) show trends specific to the target gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号