首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Locked nucleic acids (LNAs) are novel base modifications containing a methylene bridge uniting the 2'-oxygen and the 4'-carbon. In this study, LNA-modified single-stranded molecules directed the repair of single base mutations in a yeast chromosomal gene. Using a genetic assay involving a mutant hygromycin-resistance gene, correction of point and frameshift mutations was facilitated by vectors containing an LNA residue on each terminus. Increasing the number of LNA bases on each terminus reduced the correction frequency progressively. When the LNA vector is used in combination with a phosphorothioate-modified vector (74-mer), however, a high level of gene-repair activity occurs; hence, short LNA-based vectors can augment the activity of other types of targeting vectors. These data suggest that oligonucleotides containing locked nucleic acid residues can be used to direct single nucleotide exchange reactions in vivo.  相似文献   

2.
Möhrle BP  Kumpf M  Gauglitz G 《The Analyst》2005,130(12):1634-1638
Locked nucleic acid (LNA) is a nucleic acid analogue containing 2'-O,4'-C-methylene-beta-D-ribofuranosyl nucleotides, which have a bicyclic furanose unit locked in a RNA mimicking sugar conformation. Oligonucleotides containing LNA monomers show an enhanced thermal stability and robustness against nuclease mediated cleavage. Therefore special tailored LNA is a versatile tool for gene array analysis and single nucleotide polymorphism (SNP) analysis. The higher melting temperatures result from a higher affinity between the LNA and its complementary base. This was verified by the determination of the affinity constants of the duplex formation of 3 oligonucleotides: DNA, L-DNA, in which all thymidines are substituted by LNA, and a fully modified LNA, to their complementary DNA strand. Affinity constants were calculated to be 1.5 x 10(9), 4.0 x 10(9) and >10(12) L mol(-1). This was done using the label free and time resolved sensing technology reflectometric interference spectroscopy (RIfS), in an assay format similar to a titration called binding inhibition assay.  相似文献   

3.
Alexei A. Koshkin 《Tetrahedron》2006,62(25):5962-5972
The method for scaled-up production of α-l-LNA phosphoramidite building blocks containing thymine and 5-methylcytosine nucleobases is described. Binding properties of pyrimidine TFOs modified with α-l-LNA are reported. In contrast to LNA TFOs, the fully modified α-l-LNA forms a stable triplex with a model DNA duplex. Pyrimidine DNA/LNA/α-l-LNA chimeras also efficiently hybridize with a model DNA duplex in the parallel mode. LNA nucleoside containing unnatural N7-glycosylated guanine (LNA-7G) was synthesized by a convergent method and incorporated into LNA oligonucleotides. The triplex-forming alternating DNA/LNA oligonucleotides containing a single LNA-7G modification instead of internal LNA-mC demonstrate improved pH-dependent properties. The single LNA-7G modification can also discriminatively reduce competitive binding of TFOs to natural nucleic acids in the antiparallel duplex mode.  相似文献   

4.
Using the intramolecular 5-exo-5-hexenyl radical as a key cyclization step, we previously reported an unambiguous synthesis of carba-LNA thymine (cLNA-T), which we subsequently incorporated in antisense oligonucleotides (AON) and investigated their biochemical properties [J. Am. Chem. Soc.2007, 129 (26), 8362-8379]. These cLNA-T incorporated oligos showed specific RNA affinity of +3.5-5 °C/modification for AON:RNA heteroduplexes, which is comparable to what is found for those of LNAs (Locked Nucleic Acids). These modified oligos however showed significantly enhanced nuclease stability (ca. 100 times more) in the blood serum compared to those of the LNA modified counterparts without compromising any RNase H recruitment capability. We herein report the synthesis of 5-methylcytosine-1-yl ((Me)C), 9-adeninyl (A), and 9-guaninyl (G) derivatives of cLNA and their oligonucleotides and report their biochemical properties as potential RNA-directed inhibitors. In a series of isosequential carba-LNA modified AONs, we herein show that all the cLNA modified AONs are found to be RNA-selective, but the magnitude of RNA-selectivity of 7'-R-Me-cLNA-G (cLNA-G) (ΔT(m) = 2.9 °C/modification) and intractable isomeric mixtures of 7'-(S/R)-Me-cLNA-T (cLNA-T, ΔT(m) = 2.2 °C/modification) was found to be better than diastereomeric mixtures of 7'-(S/R)-Me-cLNA-(Me)C with trace of cENA-(Me)C (cLNA-(Me)C, ΔT(m) = 1.8 °C/modification) and 7'-R-Me-cLNA-A (cLNA-A, ΔT(m) = 0.9 °C/modification). cLNA-(Me)C modified AONs however exhibited the best nuclease stability, which is 4-, 7-, and 20-fold better, respectively, than cLNA-T, cLNA-A, and cLNA-G modified counterparts, which in turn was more than 100 times stable than that of the native. When the modification sites are appropriately chosen in the AONs, the cLNA-A, -G, and -(Me)C modified sites in the AON:RNA hybrids can be easily recognized by RNase H, and the RNA strand of the hybrid is degraded in a specific manner, which is important for the design of oligos for therapeutic purposes. The cLNA-(Me)C modified AON/RNA, however, has been found to be degraded 4 times faster than cLNA-A and G modified counterparts. By appropriately choosing the carba-LNA modification sites in AON strands, the digestion of AON:RNA can be either totally repressed or be limited to cleavage at specific sites or at a single site only (similar to that of catalytic RNAzyme or DNAzyme). Considering all physico- and biochemical aspects of cLNA modified oligos, the work suggests that the cLNA modified antisense oligos have the potential of being a promising therapeutic candidate due to their (i) higher nucleobase-specific RNA affinity and RNA selectivity, (ii) greatly improved nuclease stability, and (iii) efficient RNase H recruitment capability, which can induce target RNA cleavage in a very specific manner at multiple or at a single site, in a designed manner.  相似文献   

5.
The synthesis of 2'-amino-LNA (the 2'-amino derivative of locked nucleic acid) has opened up a number of exciting possibilities with respect to modified nucleic acids. While maintaining the excellent duplex stability inferred by LNA-type oligonucleotides, the nitrogen in the 2'-position of 2'-amino-LNA monomers provides an excellent handle for functionalisation. Herein, the synthesis of amino acid functionalised 2'-amino-LNA derivatives is described. Following ON synthesis, a glycyl unit attached to the N2'-position of 2'-amino-LNA monomers was further acylated with a variety of amino acids. On binding to DNA/RNA complements, the modified ONs induce a marked increase in thermal stability, which is particularly apparent in a buffer system with a low salt concentration. The increase in thermal stability is thought to be caused, at least in part, by decreased electrostatic repulsion between the negatively charged phosphate backbones when positively charged amino acid residues are appended. Upon incorporation of more than one 2'-amino-LNA modification, the effects are found to be nearly additive. For comparison, 2'-amino-LNA derivatives modified with uncharged groups have been synthesised and their effect on duplex thermal stability likewise investigated.  相似文献   

6.
For oligonucleotide-based therapeutics, a thorough understanding of the thermodynamic properties of duplex formation is critical to developing stable and potent drugs. For unmodified small interfering RNA (siRNA), DNA antisense oligonucleotide (AON) and locked nucleic acid (LNA), DNA/LNA modified oligonucleotides, nearest neighbor (NN) methods can be effectively used to quickly and accurately predict duplex thermodynamic properties such as melting point. Unfortunately, for chemically modified olignonucleotides, there has been no accurate prediction method available. Here we describe the potential of estimating melting temperature (T(m)) for nonstandard oligonucleotides by using the correlation of the experimental T(m) with the calculated duplex binding energy (BE) for oligonucleotides of a given length. This method has been automated into a standardized molecular dynamics (MD) protocol through Pipeline Pilot (PP) using the CHARMm component in Discovery Studio (DS). Results will be presented showing the correlation of the predicted data with experiment for both standard and chemically modified siRNA and AON.  相似文献   

7.
Oligonucleotide chemistry has been developed greatly over the past three decades, with many advances in increasing nuclease resistance, enhancing duplex stability and assisting with cellular uptake. Locked nucleic acid (LNA) is a structurally rigid modification that increases the binding affinity of a modified-oligonucleotide. In contrast, unlocked nucleic acid (UNA) is a highly flexible modification, which can be used to modulate duplex characteristics. In this tutorial review, we will compare the synthetic routes to both of these modifications, contrast the structural features, examine the hybridization properties of LNA and UNA modified duplexes, and discuss how they have been applied within biotechnology and drug research. LNA has found widespread use in antisense oligonucleotide technology, where it can stabilize interactions with target RNA and protect from cellular nucleases. The newly emerging field of siRNAs has made use of LNA and, recently, also UNA. These modifications are able to increase double-stranded RNA stability in serum and decrease off-target effects seen with conventional siRNAs. LNA and UNA are also emerging as versatile modifications for aptamers. Their application to known aptamer structures has opened up the possibility of future selection of LNA-modified aptamers. Each of these oligonucleotide technologies has the potential to become a new type of therapy to treat a wide variety of diseases, and LNA and UNA will no doubt play a part in future developments of therapeutic and diagnostic oligonucleotides.  相似文献   

8.
Peptide nucleic acids (PNAs) are DNA/RNA mimics which have recently generated considerable interest due to their potential use as antisense and antigene therapeutics and as diagnostic and molecular biology tools. These synthetic biomolecules were designed with improved properties over corresponding oligonucleotides such as greater binding affinity to complementary nucleic acids, enhanced cellular uptake, and greater stability in biological systems. Because of the stability and unique structure of PNAs, traditional sequence confirmation methods are not effective. Alternatively, electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry shows great potential as a tool for the characterization and structural elucidation of these oligonucleotide analogs. Extensive gas-phase fragmentation studies of a mixed nucleobase 4-mer (AACT) and a mixed nucleobase 4-mer with an acetylated N-terminus (N-acetylated AACT) have been performed. Gas-phase collision-induced dissociation of PNAs resulted in water loss, cleavage of the methylene carbonyl linker containing a nucleobase, cleavage of the peptide bond, and the loss of nucleobases. These studies show that the fragmentation behavior of PNAs resembles that of both peptides and oligonucleotides. Molecular mechanics (MM+), semiempirical (AM1), and ab initio (STO-3G) calculations were used to investigate the site of protonation and determine potential low energy conformations. Computational methods were also employed to study prospective intramolecular interactions and provide insight into potential fragmentation mechanisms.  相似文献   

9.
Functional nucleic acids(FNAs) refer to a type of oligonucleotides with functions over the traditional genetic roles of nucleic acids, which have been widely applied in screening, sensing and imaging fields. However, the potential application of FNAs in biomedical field is still restricted by the unsatisfactory stability, biocompatibility, biodistribution and immunity of natural nucleic acids(DNA/RNA). Xeno nucleic acids(XNAs) are a kind of nucleic acid analogues with chemically modified sugar groups that possess improved biological properties, including improved biological stability, increased binding affinity, reduced immune responses, and enhanced cell penetration or tissue specificity. In the last two decades, scientists have made great progress in the research of functional xeno nucleic acids, which makes it an emerging attractive biomedical application material. In this review, we summarized the design of functional xeno nucleic acids and their applications in the biomedical field.  相似文献   

10.
Homogeneous fluorescence assays for detection of nucleic acids are widely used in biological sciences. Typically, probes such as molecular beacons that rely on distance-dependent fluorescence quenching are used for such assays. Less attention has been devoted to tethering a single kind of fluorophores to oligonucleotides and exploiting hybridization-induced modulation of fluorescence intensity for nucleic acid detection. Herein, thermal denaturation experiments and fluorescence properties of oligodeoxyribonucleotides containing one or more 2'-N-(pyren-1-yl)carbonyl-2'-amino-LNA monomer(s) X are described. These pyrene-functionalized 2'-amino-LNAs display large increases in thermal stability against DNA/RNA complements with excellent Watson-Crick mismatch discrimination. Upon duplex formation of appropriately designed 2'-N-(pyren-1-yl)carbonyl-2'-amino-LNA probes and complementary DNA/RNA, intensive fluorescence emission with quantum yields between 0.28 and 0.99 are observed. Quantum yields of such magnitudes are unprecedented among pyrene-labeled oligonucleotides. Molecular modeling studies suggest that the dioxabicyclo[2.2.1]heptane skeleton and amide linkage of monomer X fix the orientation of the pyrene moiety in the minor groove of a nucleic acid duplex. Interactions between pyrene and nucleobases, which typically lead to quenching of fluorescence, are thereby reduced. Duplexes between multiple modified probes and DNA/RNA complements exhibit additive increases in fluorescence intensity, while the fluorescence of single stranded probes becomes increasingly quenched. Up to 69-fold increase in fluorescence intensity (measured at lambda(em) = 383 nm) is observed upon hybridization to DNA/RNA. The emission from duplexes of multiple modified probes and DNA/RNA at concentrations down to less than 500 nM can easily be seen by the naked eye using standard illumination intensities.  相似文献   

11.
Recently, KOD and its related DNA polymerases have been used for preparing various modified nucleic acids, including not only base-modified nucleic acids, but also sugar-modified ones, such as bridged/locked nucleic acid (BNA/LNA) which would be promising candidates for nucleic acid drugs. However, thus far, reasons for the effectiveness of KOD DNA polymerase for such purposes have not been clearly elucidated. Therefore, using mutated KOD DNA polymerases, we studied here their catalytic properties upon enzymatic incorporation of nucleotide analogues with base/sugar modifications. Experimental data indicate that their characteristic kinetic properties enabled incorporation of various modified nucleotides. Among those KOD mutants, one achieved efficient successive incorporation of bridged nucleotides with a 2'-ONHCH?CH?-4' linkage. In this study, the characteristic kinetic properties of KOD DNA polymerase for modified nucleoside triphosphates were shown, and the effectiveness of genetic engineering in improvement of the enzyme for modified nucleotide polymerization has been demonstrated.  相似文献   

12.
A convergent route to a new class of locked nucleic acids, i.e., 2'-amino-alpha-L-LNA, has been developed. The optimized synthetic route to the corresponding phosphoramidite building block of thymine proceeds in 4% overall yield over 15 steps from the starting diol. Crucial synthetic steps include (a) introduction of a C2-azido group prior to nucleobase coupling, (b) Vorbrüggen glycosylation primarily affording the desired alpha-anomer, (c) separation of alpha-L-ribo- and beta-L-ribo-configured bicyclic nucleosides, and (d) selection of a suitable protecting group to avoid intramolecular Michael addition of the C2'-amino group onto the C6-position. Incorporation of a 2'-amino-alpha-L-LNA monomer into oligodeoxyribonucleotides results in modest changes in thermal stability with complementary DNA, whereas significant increases in thermal stability are observed with RNA complements along with excellent Watson-Crick discrimination. These results, along with the flexibility of the synthetic strategy allowing chemoselective N2'-functionalization at a late stage, render 2'-amino-alpha-L-LNA a promising building block for nucleic acid based nanobiotechnology and therapeutics. A slight modification in strategy facilitated the synthesis of the corresponding phosphoramidite building blocks of Michael adducts, which due to their tetracyclic skeletons exhibit a conformationally restricted furanose ring and glycosidic torsion angle (anti-range). Incorporation of such a "locked LNA" monomer into oligodeoxyribonucleotides results in large decreases in thermal affinity toward DNA/RNA complements.  相似文献   

13.
A novel efficient method for the synthesis of locked nucleic acid (LNA) monomers is described. The LNA 5',3'-diols containing thymine, 4-N-acetyl- and 4-N-benzoylcytosine, 6-N-benzoyladenine, and 2-N-isobutyrylguanine as nucleobases were prepared via convergent syntheses. The method is based on the use of the common sugar intermediate 1,2-di-O-acetyl-3-O-benzyl-4-C-methanesulfonoxymethyl-5-O-methanesulfonyl-D-erythro-pentofuranose (8) that easily can be prepared from D-glucose in multigram scale. Four different nucleobases were stereoselectively coupled to 8 using a modified Vorbrüggen procedure to give the corresponding 4'-C-branched nucleoside derivatives. Subsequent ring closing furnished the protected LNA nucleosides. The 5'-O-mesyl groups were efficiently displaced by nucleophilic substitution using sodium benzoate. Saponification of the 5'-benzoates followed by catalytic removal of the 3'-O-benzyl groups afforded the free LNA diols. The exocyclic amino groups of adenosine and cytidine were selectively acylated to give 4-N-acetyl- or 4-N-benzoyl-LNA-C and 6-N-benzoyl-LNA-A. The isobutyryl group of guanine was retained during the preparation of 2-N-isobutyryl-LNA-G. The LNA-T diol and base-protected LNA diols can be directly converted into LNA-phosphoramidites for automated chemical synthesis of LNA containing oligonucleotides.  相似文献   

14.
Antisense oligonucleotides (ASOs) have been touted as an emerging therapeutic class to treat genetic disorders and infections. The evaluation of metabolic stability of ASOs during biotransformation is critical due to concerns regarding drug safety. Because the effects of the modifications in ASOs on their metabolic stabilities are different from unmodified ASOs, studies that afford an understanding of these effects as well as propose proper methods to determine modified and unmodified ASO metabolites are imperative. An LC–tandem mass spectrometry method offering good selectivity with a high-quality separation using 30 mm N,N-dimethylcyclohexylamine and 100 mm 1,1,1,3,3,3-hexafluoro-2-propanol was utilized to identify each oligonucleotide metabolite. Subsequently, the method was successfully applied to a variety of in vitro systems including endo/exonuclease digestion, mouse liver homogenates, and then liver microsomes, after which the metabolic stability of unmodified versus modified ASOs was compared. Typical patterns of chain-shortened metabolites generated by mainly 3′-exonucleases were observed in phosphodiester and phosphorothioate ASOs, and endonuclease activity was identically observed in gapmers that showed relatively more resistance to nuclease degradation. Overall, the degradation of each ASO occurred more slowly corresponding to the degree of chemical modifications, while 5′-exonuclease activities were only observed in gapmers incubated in mouse liver homogenates. Our findings provide further understanding of the impact of modifications on the metabolic stability of ASOs, which facilitates the development of future ASO therapeutics.  相似文献   

15.
We report here the first synthesis of Te‐nucleoside phosphoramidites and Te‐modified oligonucleotides. We protected the 2′‐tellurium functionality by alkylation and found that the Te functionality is compatible with solid‐phase synthesis and that the Te oligonucleotides are stable during deprotection and purification. In addition, the redox properties of the Te functionalities have been explored. We found that the telluride and telluoxide DNAs are interchangeable by redox reactions. At elevated temperature, the Te‐DNA can also be site‐specifically fragmented oxidatively or reductively when 2′‐TePh functionality is present, whereas elimination of the nucleobase is observed in the presence of 2′‐TeMe. Moreover, the stability of the DNA duplexes derivatized with the Te functionalities has been investigated. Our Te derivatization of nucleic acids provides a novel approach for investigating DNA damage as well as for structure and function studies of nucleic acids and their protein complexes.  相似文献   

16.
We have synthesized two novel phosphoramidites with a ferrocenyl moiety at the 2'-ribose position linked through a butoxy linker. Using automated DNA/RNA synthesis techniques, oligonucleotides containing ferrocene at various positions were prepared and characterized by HPLC, MALDI-TOF mass spectrometry, and electrochemistry. Thermal stability studies of the ferrocene-modified DNA duplexes revealed that introduction of one or two ferrocenyl complexes does not result in an observed change of the T(m) values of the corresponding DNA duplexes when compared to the nonmodified hybrids. These data indicate that the introduction of a ferrocenyl group at the 2'-position of the ribose ring containing either a purine or pyrimidine base has no effect on the stability of the modified DNA. The electrochemical behavior of the ferrocene-containing DNA was examined by cyclic voltammetry. The modified 2'-ferrocene-oligonucleotides are electrochemically active and can be used as signaling probes for the electronic detection of nucleic acids on bioelectronic sensors.  相似文献   

17.
Locked nucleic acid (LNA) is a deoxyribonucleotide analogue with an unusual ‘locked’ furanose conformation. LNA-modified oligonucleotide probes have demonstrated an enhanced binding affinity towards their complementary strands; however, their potential to discriminate non-complementary hybridization of mismatches has not been explored. In this study, we investigated the effect of the chemical nature of LNA nucleobases on the hybridization stability and the capability of LNA-modified oligonucleotides to discriminate the LNA:DNA mismatched base pairs. It was observed that LNA modification indeed improves the discrimination capability of oligonucleotides by increasing the melting temperature differences between the complementary duplexes and hybrids containing mismatches. Particularly, LNA purines offer a greater potential to recognize the mismatches than LNA pyrimidines and DNA purines. Real-time PCR experiments further confirmed that LNA modifications at the 3′-end are more effective. The results and conclusions in this study provide useful information for hybridization-based nucleic acid analysis where designing sound oligonucleotide probes is crucial to the success of the analyses.   Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Combining the structural elements of the second generation 2'-O-methoxyethyl (MOE) and locked nucleic acid (LNA) antisense oligonucleotide (AON) modifications yielded the highly nuclease resistant 2',4'-constrained MOE and ethyl bicyclic nucleic acids (cMOE and cEt BNA, respectively). Crystal structures of DNAs with cMOE or cEt BNA residues reveal their conformational preferences. Comparisons with MOE and LNA structures allow insights into their favourable properties for AON applications.  相似文献   

19.
Second generation 2'-O,4'-C-methylene-linked nucleotides 1-3 containing hypoxanthine, 2,6-diaminopurine, and 2-aminopurine nucleobases were synthesized and incorporated into locked nucleic acid (LNA) oligonucleotides by means of the automated phosphoramidite method. The required phosphoramidite monomeric units were efficiently prepared via convergent synthesis. The glycosyl donor 4 was stereoselectively coupled with hypoxanthine and 6-chloro-2-aminopurine to give the 4'-C-branched nucleosides 5 and 17. The methods for conversion of 5 and 17 into phosphoramidites 11, 25, and 29 were developed and described in full details for the first time. Hybridization properties of LNA octamers containing the new LNA nucleotides were assessed against perfect and singly mismatched DNA. The binding studies revealed that all LNA octamers hybridize very efficiently to DNA following Watson-Crick base-pairing rules with increased binding affinity compared to the DNA analogues. The unique properties of the nucleotides 1-3 make them very useful for further strengthening of the LNA technology.  相似文献   

20.
Hybridization of complementary oligonucleotides is essential to highly valuable research tools in many fields including genetics, molecular biology, and cell biology. For example, an antisense molecule for a particular segment of sense messenger RNA allows gene expression to be selectively turned off, and the polymerase chain reaction requires complementary primers in order to proceed. It is hoped that the antisense approach may lead to therapeutics for treatment of various diseases including cancer. Areas of active research in the antisense field focus on the mechanisms of cellular uptake of antisense molecules and their delivery to specific cell sites, an improved understanding of how these molecules inhibit the production of proteins, as well as the optimization of the chemical stability of antisense molecules and the thermodynamic stability of the duplexes they form with the mRNA targets. The last two issues in particular have prompted chemists to launch an extensive search for oligonucleotide analogs with improved binding properties for hybridization with RNA and higher resistance toward nuclease degradation. During the last years this research has resulted in a flurry of new chemical analogs of DNA and RNA with modifications in the sugar–phosphate backbone as well as in the nucleobase sites. However, to date little effort has been directed toward uncovering the exact origins of the gain or loss in stability when nucleic acid analogs bind to RNA. Although large amounts of thermodynamic data have been collected, the structural perturbations induced by the modifications in hybrid duplexes are only poorly understood. For many modified oligonucleotides the compatibility of protection, coupling, and deprotection chemistry with standard DNA and RNA synthesis protocols makes it now possible to generate modified nucleic acid fragments or mixed oligonucleotides containing modifications at selected sites in quantities suitable for three-dimensional structure investigations. Such studies should reveal the structural origins of the observed changes in affinity and specificity of binding for particular modifications and may guide the development of second-and third-generation antisense molecules. In addition, the availability of a previously unimaginable variety of modified building blocks and the investigation of their structures provides the basis for a deeper understanding of the native DNA and RNA structures. This contribution will summarize the results of X-ray crystallographic structure determinations of modified nucleic acid fragments conducted in our laboratory during the last three years and the insights gained from them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号