首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular anions, Li(3)O(-) and Na(3)O(-) were produced by laser vaporization and studied via anion photoelectron spectroscopy. Li(3)O(-) and Na(3)O(-) are the negative ions of the super-alkali neutral molecules, Li(3)O and Na(3)O. A two-photon process involving the photodetachment of electrons from the Li(3)O(-) and Na(3)O(-) anions and the photoionization of electrons from the resulting Li(3)O and Na(3)O neutral states was observed. The assignment of the Li(3)O(-) photoelectron spectrum was based on computational results provided by Zein and Ortiz [J. Chem. Phys. 135, 164307 (2011)].  相似文献   

2.
Hermann M. Niemeyer 《Tetrahedron》1979,35(10):1297-1299
The performance of ab initio STO-3G and CNDO/2 molecular orbital methods in the calculation of properties of polynitromethanes is studied.  相似文献   

3.
4.
Negative ion photoelectron spectra of ZrO(-), HfO(-), HfHO(-), and HfO(2)H(-) are reported. Even though zirconium- and hafnium-containing molecules typically exhibit similar chemistries, the negative ion photoelectron spectral profiles of ZrO(-) and HfO(-) are dramatically different from one another. By comparing these data with relevant theoretical and experimental studies, as well as by using insights drawn from atomic spectra, spin-orbit interactions, and relativistic effects, the photodetachment transitions in the spectra of ZrO(-) and HfO(-) were assigned. As a result, the electron affinities of ZrO and HfO were determined to be 1.26 ± 0.05 eV and 0.60 ± 0.05 eV, respectively. The anion photoelectron spectra of HfHO(-) and HfO(2)H(-) are similar to one another and their structural connectivities are likely to be H-Hf-O(-) and O-Hf-OH(-), respectively. The electron affinities of HfHO and HfO(2)H are 1.70 ± 0.05 eV and 1.73 ± 0.05 eV, respectively.  相似文献   

5.
《Tetrahedron》1986,42(22):6263-6267
The photoelectron spectroscopy of a number of radical anions has been investigated. We find the following electron affinities: EA(C3) =1.981 ±0.020 eV, EA(C3H) = 1.858 ±0.023 eV, EA(C3H2) = 1.794 ± 0.025 eV, EA(C3O) = 1.34±0.15 eV, EA(C3O2) = 0.85±0.15 eV, EA(C4O)= 2.05±0.15 eV, and EA(CS2) = 0.895± 0.020 eV. The structure and bonding for each of these ions is discussed.  相似文献   

6.
(Nickel)(n)(benzene)(m) (-) cluster anions were studied by both mass spectrometry and anion photoelectron spectroscopy. Only Ni(n)(Bz)(m) (-) species for which n > or =m were observed in the mass spectra. No single-nickel Ni(1)(Bz)(m) (-) species were seen. Adiabatic electron affinities, vertical detachment energies, and second transition energies were determined for (n,m)=(2,1), (2,2), (3,1), and (3,2). For the most part, calculations on Ni(n)(Bz)(m) (-) species by B. K. Rao and P. Jena [J. Chem. Phys. 117, 5234 (2002)] were found to be consistent with our results. The synergy between their calculations and our experiment provided enhanced confidence in the theoretically implied magnetic moments of several nickel-benzene complexes. The magnetic moments of small nickel clusters were seen to be extremely sensitive to immediate molecular environmental effects.  相似文献   

7.
We report the observation of hydrated adenine anions, A(-)(H(2)O)(n), n=1-7, and their study by anion photoelectron spectroscopy. Values for photoelectron threshold energies, E(T), and vertical detachment energies are tabulated for A(-)(H(2)O)(n) along with those for hydrated uracil anions, U(-)(H(2)O)(n), which are presented for comparison. Analysis of these and previously measured photoelectron spectra of hydrated nucleobase anions leads to the conclusion that threshold energies significantly overstate electron affinity values in these cases, and that extrapolation of hydrated nucleobase anion threshold values to n=0 leads to incorrect electron affinity values for the nucleobases themselves. Sequential shifts between spectra, however, lead to the conclusion that A(-)(H(2)O)(3) is likely to be the smallest adiabatically stable, hydrated adenine anion.  相似文献   

8.
We present a synergetic experimental/theoretical study of hydrated hexafluorobenzene anions. Experimentally, we measured the anion photoelectron spectra of the anions, C6F6(-)(H2O)n (n=0-2). The spectra show broad peaks, which shift to successively higher electron binding energies with the addition of each water molecule to the hexafluorobenzene anion. Complementing these results, we also conducted density functional calculations which link adiabatic electron affinities to the optimized geometric structures of the negatively charged species and their neutral counterparts. Neutral hexafluorobenzene-water complexes are not thought to be hydrogen bonded. In the case of C6F6(-)(H2O)1, however, its water molecule was found to lie in the plane of the hexafluorobenzene anion, bound by two O-H...F ionic hydrogen bonds. Whereas in the case of C6F6(-)(H2O)2, both water molecules also lie in the plane of and are hydrogen bonded to the hexafluorobenzene anion but on opposite ends. This study and that of Schneider et al. [J. Chem. Phys. 127, 114311 (2007), preceding paper] are in agreement regarding the geometry of C6F6(-)(H2O)1.  相似文献   

9.
Negative-ion photoelectron spectroscopy is applied to the PH-, PH2-, P2H-, P2H2-, and P2H3-molecular anions. Franck-Condon simulations of the photoelectron spectra are used to analyze the spectra and to identify various P2H(n)- species. The simulations employ density-functional theory calculations of molecular geometries and vibrational frequencies and normal modes, and coupled-cluster theory calculations of electron affinities. The following electron affinities are obtained: EA0(PH) = 1.027 +/- 0.006 eV, EA0(PH2) = 1.263 +/- 0.006 eV, and EA0(P2H) = 1.514 +/- 0.010 eV. A band is identified as a mixture of trans-HPPH- and cis-HPPH-. Although the trans and cis bands cannot be definitively assigned from experimental information, using theory as a guide we obtain EA0(trans-HPPH)= 1.00 +/- 0.01 eV and EA0(cis-HPPH) = 1.03 +/- 0.01 eV. A weak feature tentatively assigned to P2H3- has a vertical detachment energy of 1.74 eV. The derived gas-phase acidity of phosphine is delta(acid)G298(PH3) < or = 1509.7 +/- 2.1 kJ mo1(-1).  相似文献   

10.
We present low-energy velocity map photoelectron imaging results for bare and Ar solvated nitroethane anions. We report an improved value for the adiabatic electron affinity of nitroethane of (191 ± 6) meV which is used to obtain a C-NO(2) bond dissociation energy of (0.589 ± 0.019) eV in nitroethane anion. We assign a weak feature at (27 ± 5) meV electron binding energy to the dipole-bound anion state of nitroethane. Photoelectron angular distributions exhibit increasing anisotropy with increasing kinetic energies. The main contributions to the photoelectron spectrum of nitroethane anion can be assigned to the vibrational modes of the nitro group. Transitions involving torsional motion around the CN bond axis lead to strong spectral congestion. Interpretation of the photoelectron spectrum is assisted by ab initio calculations and Franck-Condon simulations.  相似文献   

11.
12.
An experimental and theoretical study is made on the anisole-water complex. It is the first van der Waals complex studied by high resolution electronic spectroscopy in which the water is seen acting as an acid. Vibronically and rotationally resolved electronic spectroscopy experiments and molecular mechanics calculations are used to elucidate the structure of the complex in the ground and first electronic excited state. Some internal dynamics in the system is revealed by high resolution spectroscopy.  相似文献   

13.
Aluminium cluster anions (Al n ? ) are produced by laser vaporization without additional ionization and cooled by supersonic expansion. Photoelectrons from mass-identified anion bunches (n=2...25) are detached by laser light (hv=3.68 eV) and undergo energy analysis in a magnetic bottle-type time-of-flight spectrometer. The measurements provide information about the electronic excitation energies from ionic ground states to neutral states of the clusters. In contrast to bulk aluminium these cluster photoelectron spectra partially have well-resolved bands which originate from low-lying excited bands. For small clusters, especially the aluminium dimer and trimer, quantum-chemical calculations will be compared to the measurements. The electron affinity size dependence of larger clusters shows conclusive evidence for “shell” effects.  相似文献   

14.
Metal (M)-sulfur cluster anions (M = Ag, Fe and Mn) have been studied using photoelectron spectroscopy (PES) with a magnetic-bottle type time-of-flight electron spectrometer. The MnS m ? cluster anions were formed in a laser vaporization cluster source. For Ag-S, the largest coordination number of Ag atoms (n max) is generally expressed as n max =2m ? 1 in each series of the number of S atoms (m). For Fe?S and Mn?S, it was found that the stable cluster ions are the ones with compositions of n=m and n=m±1. Their electron affinities were measured from the onset of the PES spectrum. For Ag?S, the EAs of Ag1Sm are small and around 1 eV, whereas those of AgnSm (n ≥ 2) become large above 2 eV. The features in the mass distribution and PES suggest that Ag2S unit is preferentially formed with increasing the number of Ag atoms. For Fe?S and Mn?S, the PES spectra of FenS m ? /MnnS m ? show a unique similarity at n ≥ m, indicating that the Fe/Mn atom addition to FenS n ? /MnnS n ? has little effect on the electronic property of FenSn/MnnSn. The PES spectra imply that the FenSn cluster is the structural framework of these clusters, as similarly as the determined structure of the FenSn cluster in nitrogenase enzyme.  相似文献   

15.
The photoelectron spectra of chromium-doped silicon cluster anions, CrSi-(n), were measured over the size range, n=8-12. Their vertical detachment energies were measured to be 2.71, 2.88, 2.87, 2.95, and 3.18 eV, respectively. Our results support theoretical calculations by Khanna, Rao, and Jena [Phys. Rev. Lett. 89, 016803 (2002)] which found CrSi12 to be an enhanced stability (magic) cluster with its chromium atom encapsulated inside a silicon cage and with its magnetic moment completely quenched by the effects of the surrounding cage.  相似文献   

16.
High resolution anion photodetachment spectra of the phenoxide and thiophenoxide anions were obtained with slow electron velocity-map imaging. The spectra show transitions to the X(2)B(1) neutral states of both species and to the ?(2)B(2) state of the thiophenoxy radical. Comparison of the spectra with Franck-Condon simulations allows several gas-phase vibrations to be assigned. The adiabatic electron affinities are determined to be 2.2538(8) eV and 2.3542(6) eV for phenoxy and thiophenoxy, respectively. The term energy of the ?(2)B(2) state of thiophenoxy is found to be 0.3719(9) eV, higher than the values reported in photodissociation experiments of thiophenol.  相似文献   

17.
Multiply charged anions (MCA's) are unstable relative to electron autoejection; however, the repulsive Coulomb barrier (RCB) provides electronic stability. In view of their interest in biological systems, the behavior of isolated AsO(4)(3-), PO(4)(3-), SO(4)(2-), and SeO(4)(2-) in the gas phase and in solution has been studied. To calculate the RCB values, the electrostatic and point charge model-two methods currently used in the literature-are applied, together with a recently introduced Conceptual Density Functional Theory (DFT) based approach. The relative stability of the above-mentioned MCA's is compared. The trends of the RCB are analyzed by including analogous compounds from the second and third row and by passing from dianionic to trianionic systems. Considering the effect of solvent, using the SCI-PCM solvent model, the evolution of the RCB when passing to higher dielectric constants is evaluated. The RCB is related to the properties of the system as polarizability/softness. Both a numerical and a conceptual correlation between the RCB and the global softness is found.  相似文献   

18.
We present low-energy velocity map photoelectron imaging results for bare and Ar-solvated 1-nitropropane and 1-nitrobutane anions. We report the adiabatic electron affinity of 1-nitropropane as (223 ± 6) meV and that of 1-nitrobutane as (240 ± 6 meV). The vertical detachment energies of these two species are found to be (0.92 ± 0.05) and (0.88 ± 0.05) eV, respectively. The photoelectron spectra are discussed in the framework of Franck-Condon simulations based on density functional theory. We observe unusual resonances in the photoelectron spectra of both ions under study, whose kinetic energy is independent of the photon energy of the detaching radiation. We discuss possible origins of these resonances as rescattering phenomena, consistent with the experimental photoelectron angular distributions.  相似文献   

19.
Mass spectrometry and photoelectron spectroscopy of o-, m-, and p-terphenyl cluster anions, (o-TP)n(-) (n = 2-100), (m-TP)n(-) (n = 2-100), and (p-TP)n(-) (n = 1-100), respectively, are conducted to investigate the effect of molecular shape on the molecular aggregation form and the resultant ion core character of the clusters. For (o-TP)n(-) and (m-TP)n(-), neither magic numbers nor discernible isomers are observed throughout the size range. Furthermore, their vertical detachment energies (VDEs) increase up to large n and depend linearly on n(-1/3), implying that they possess a three-dimensional (3D), highly reorganized structure encompassing a monomeric anion core. For (p-TP)n(-), in contrast, prominent magic numbers of n = 5, 7, 10, 12, and 14 are observed, and the VDEs show pronounced irregular shifts below n = 10, while they remain constant above n = 14 (isomer A). These results can be rationalized with two-dimensional (2D) orderings of p-TP molecules and different types of 2D shell closure at n = 7 and 14, the monomeric and multimeric anion core, respectively. Above n = 16, the new feature (isomer B) starts to appear at the higher binding side of isomer A, and it becomes dominant with n, while isomer A gradually disappears for larger sizes. In contrast to isomer A, the VDEs of isomer B continuously increase with the cluster size. This characteristic size evolution suggests that the transition to modified 2D aggregation forms from 2D ones occurs at around n = 20.  相似文献   

20.
Complexes formed by anions and substituted molecular bowls were studied by means of computational methods. The bowls consisted of corannulene molecules substituted with five or ten F, Cl, or CN groups, whereas Cl(-), Br(-) and BF(4)(-) were the anions considered. Substitution with F, Cl and CN hardly affects the geometry of the bowl, but produces an inversion of the molecular electrostatic potential of the bowls, which becomes positive over the two faces of the bowl, therefore interacting favorably with anions. In all cases considered, the most stable complex presents the anion interacting with the concave side of the bowl. The strength of the interaction roughly follows the values of molecular electrostatic potential, being more stable as more positive is the potential. The preference of anions to interact with the concave side of the bowls has its origin in stronger electrostatic and dispersion interactions. Though the solvent produces an important decrease in the stability of the complexes, the results suggest the possibility of employing these substituted buckybowls as anion receptors with a preferential concave complexation, especially for large anions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号