共查询到20条相似文献,搜索用时 210 毫秒
1.
Exact, closed-form analytical expressions are presented for evaluating the potential energy of electrical double layer (EDL) interactions between a sphere and an infinite flat plate for three different types of interactions: constant potential, constant charge, and an intermediate case as given by the linear superposition approximation (LSA). By taking advantage of the simpler sphere-plate geometry, simplifying assumptions used in the original Derjaguin approximation (DA) for sphere-sphere interaction are avoided, yielding expressions that are more accurate and applicable over the full range of κa. These analytical expressions are significant improvements over the existing equations in the literature that are valid only for large κa because the new equations facilitate the modeling of EDL interactions between nanoscale particles and surfaces over a wide range of ionic strength. 相似文献
2.
Joubert DP 《The Journal of chemical physics》2012,136(17):174113
Some properties of exact ensemble density functionals can be determined by examining the particle number dependence of ground state ensemble density matrices for systems where the integer ground state energies satisfy a convexity condition. The results include the observation that the integral of the product of the functional derivative and Fukui function of functionals that can be expressed as the trace of an operator is particle number independent for particle numbers between successive integers and the integral itself is equal to the difference between functionals evaluated at successive integer particle numbers. Expressions that must be satisfied by 2nd and higher order functional derivatives are formulated and equations that must be satisfied point by point in space are derived. Using the analytic Hooke's atom model, it is shown that commonly used correlation functional approximations do not bear any resemblance to a spatially dependent expression derived from the exact second order functional derivative of the correlation functional. It is also shown that two expressions for the mutual Coulomb energy are not equal when approximate exchange and correlation functionals are used. 相似文献
3.
Daniel M. Heffernan Richard L. Liboff 《International journal of quantum chemistry》1981,19(5):745-753
Exact wave functions and eigenenergy relations are obtained for a biwell potential as a function of interwell displacement and single well parameters. The proliferation of energies is shown explicitly as the wells are brought into close proximity. The model is compared with the opaque division-wall model. These results find important application in laser and nuclear physics. 相似文献
4.
Ilya G. Ryabinkin Viktor N. Staroverov 《International journal of quantum chemistry》2013,113(11):1626-1632
The differential virial theorem (DVT) is an explicit relation between the electron density ρ( r ), the external potential, kinetic energy density tensor, and (for interacting electrons) the pair function. The time‐dependent generalization of this relation also involves the paramagnetic current density. We present a detailed unified derivation of all known variants of the DVT starting from a modified equation of motion for the current density. To emphasize the practical significance of the theorem for noninteracting electrons, we cast it in a form best suited for recovering the Kohn–Sham effective potential vs( r ) from a given electron density. The resulting expression contains only ρ( r ), vs( r ), kinetic energy density, and a new orbital‐dependent ingredient containing only occupied Kohn–Sham orbitals. Other possible applications of the theorem are also briefly discussed. © 2012 Wiley Periodicals, Inc. 相似文献
5.
The solution of the quantum-mechanical one-particle problem involving a Coulomb potential with a cut-off contains Whittaker functions, difficult to evaluate individually. However, the energy expression involves a ratio of two contiguous Whittaker functions, and the entire ratio is easily expressed as a convergent continued fraction. Representative energy eigenvalues are calculated, correcting the errors due to an earlier Bessel function approximation by Wannier. 相似文献
6.
Marcin Molski 《Journal of mathematical chemistry》2017,55(2):598-606
Exact solutions of the vibrational Schrödinger equation for a generalized potential energy function \(\hbox {V(R)}=\hbox {C}_{0}(\mathrm{{R}-\mathrm {R}}_{\mathrm{e}})^{2}/[\hbox {aR}\,+\,(\mathrm{{b}-\mathrm {a}})\hbox {R}_{\mathrm{e}}]^{2}\) are obtained. It includes those of Dunham, Ogilvie and Simons–Parr–Finlan potentials as special cases corresponding to b \(=\) 1, a \(=\) 0, 1/2, 1, respectively. The analytical wave functions derived are useful to test the quality of numerical methods or to perform perturbative or variational calculations for the problems that cannot be solved exactly. Coherent states for generalized potential, which minimize the position–momentum uncertainty relation are also constructed. 相似文献
7.
We give exact and explicit expressions of mean first-passage times for random walks in a rectangular domain in both cases of reflecting boundary conditions and periodic boundary conditions. The situations with one or two absorbing targets are considered. 相似文献
8.
We derive an exact, continuous-variable path integral (PI) representation of the canonical partition function for electronically nonadiabatic systems. Utilizing the Stock-Thoss (ST) mapping for an N-level system, matrix elements of the Boltzmann operator are expressed in Cartesian coordinates for both the nuclear and electronic degrees of freedom. The PI discretization presented here properly constrains the electronic Cartesian coordinates to the physical subspace of the mapping. We numerically demonstrate that the resulting PI-ST representation is exact for the calculation of equilibrium properties of systems with coupled electronic and nuclear degrees of freedom. We further show that the PI-ST formulation provides a natural means to initialize semiclassical trajectories for the calculation of real-time thermal correlation functions, which is numerically demonstrated in applications to a series of nonadiabatic model systems. 相似文献
9.
A new Coulomb ring-shaped potential is proposed, which results from adding a potential proportional to(cos θ/r 2 sin2 θ)to a Coulomb potential. The Schrödinger equation with this new model potential is separated into angular and radial components. The exactly wavefunctions and the spectrum equation for bound state are presented by the standard approach. 相似文献
10.
Sun Guo-Hua Dong Qian Bezerra V. B. Dong Shi-Hai 《Journal of mathematical chemistry》2022,60(4):605-612
Journal of Mathematical Chemistry - The analytical solutions of an asymmetric double well potential $$V(x)=a, x^2-b, x^3+c, x^4$$ are found to be a triconfluent Heun function $$H_{T}(alpha ,... 相似文献
11.
In principle, the extension of density functional theory (DFT) to Coulombic systems in a nonvanishing magnetic field is via current DFT (CDFT). Though CDFT is long established formally, relatively little is known with respect to any generally applicable, reliable approximate E(XC) and A(XC) functionals analogous with the workhorse approximate functionals (local density approximation and generalized gradient approximation) of ordinary DFT. Progress can be aided by having benchmark studies on a solvable correlated system. At zero field, the best-known finite system for such purposes is Hooke's atom. Recently we extended the exact ground state solutions for this two-electron system to certain combinations of nonzero external magnetic fields and confinement strengths. From those exact solutions, as well as high-accuracy numerical results for other field and confinement combinations, we construct the correlated electron density and paramagnetic current density, the exact Kohn-Sham orbitals, and the exact DFT and CDFT exchange-correlation energies and potentials. We compare with results from several widely used approximate functionals, all of which exhibit major qualitative failures, whether in CDFT or in naive application of ordinary DFT. We also illustrate how the CDFT vorticity variable nu is a computationally difficult quantity which may not be appropriate in practice to describe the external B field effects on E(XC) and A(XC). 相似文献
12.
We consider the problem of stochastic averaging of a quantum two-state dynamics driven by non-Markovian, discrete noises of the continuous time random walk type (multistate renewal processes). The emphasis is put on the proper averaging over the stationary noise realizations corresponding, e.g., to a stationary environment. A two-state non-Markovian process with an arbitrary non-exponential distribution of residence times (RTDs) in its states with a finite mean residence time provides a paradigm. For the case of a two-state quantum relaxation caused by such a classical stochastic field we obtain the explicit exact, analytical expression for the averaged Laplace-transformed relaxation dynamics. In the limit of Markovian noise (implying an exponential RTD), all previously known results are recovered. We exemplify new more general results for the case of non-Markovian noise with a biexponential RTD. The averaged, real-time relaxation dynamics is obtained in this case by numerically exact solving of a resulting algebraic polynomial problem. Moreover, the case of manifest non-Markovian noise with an infinite range of temporal autocorrelation (which in principle is not accessible to any kind of perturbative treatment) is studied, both analytically (asymptotic long-time dynamics) and numerically (by a precise numerical inversion of the Laplace-transformed averaged quantum relaxation). 相似文献
13.
The electrical potential inside a lipid structure, which is described by a modified Poisson-Boltzmann equation in the literature (Borukhov et al. Electrochim. Acta 2000, 46, 221), is solved, taking into account the effects of ionic sizes. Here, a micelle comprises an ionic surfactant layer and an aqueous core; the dissociation of the former yields a charged surface. The governing equation, which was solved numerically in a previous study for spherical geometry (Hsu et al. J. Phys. Chem. B 2003, 107, 14429), is solved analytically in this study for planar, cylindrical, and spherical geometries. The analytical results obtained are readily applicable for the evaluation of the spatial distributions of counterions inside a lipid structure. We show that if the linear size of a reverse micelle is fixed, the degree of dissociation of the surfactant layer follows the order planar > cylindrical > spherical. 相似文献
14.
Starting out with the electron gas, we make a survey of the reasons for the singularity in the derivative of the orbital energy with respect to the wave number at the Fermi level for a realistic extended metallic system. Some properties of the occupation function are reviewed and it is pointed out that the direct reason for the singularity resides in a divergent lattice sum originating in the exchange part of the orbital energy. Numerical aspects are discussed, in particular with reference to the difficulty in detecting this singularity in actual computations. 相似文献
15.
In methods based on frozen-density embedding theory or subsystem formulation of density functional theory, the non-additive kinetic potential (v(t) (nad)(r)) needs to be approximated. Since v(t) (nad)(r) is defined as a bifunctional, the common strategies rely on approximating v(t) (nad)[ρ(A),ρ(B)](r). In this work, the exact potentials (not bifunctionals) are constructed for chemically relevant pairs of electron densities (ρ(A) and ρ(B)) representing: dissociating molecules, two parts of a molecule linked by a covalent bond, or valence and core electrons. The method used is applicable only for particular case, where ρ(A) is a one-electron or spin-compensated two-electron density, for which the analytic relation between the density and potential exists. The sum ρ(A) + ρ(B) is, however, not limited to such restrictions. Kohn-Sham molecular densities are used for this purpose. The constructed potentials are analyzed to identify the properties which must be taken into account when constructing approximations to the corresponding bifunctional. It is comprehensively shown that the full von Weizsa?cker component is indispensable in order to approximate adequately the non-additive kinetic potential for such pairs of densities. 相似文献
16.
Yu HG 《The Journal of chemical physics》2005,122(16):164107
A coherent discrete variable representation (ZDVR) is proposed for constructing a multidimensional potential-optimized DVR basis. The multidimensional quadrature pivots are obtained by diagonalizing a complex coordinate operator matrix in a finite basis set, which is spanned by the lowest eigenstates of a two-dimensional reference Hamiltonian. Here a c-norm condition is used in the diagonalization procedure. The orthonormal eigenvectors define a collocation matrix connecting the localized ZDVR basis functions and the finite basis set. The method is applied to two vibrational models for computing the lowest bound states. Results show that the ZDVR method provides exponential convergence and accurate energies. Finally, a zeroth-order approximation method is also derived. 相似文献
17.
We discuss a procedure for calculating numerical Hartree–Fock orbitals that can be applied to polyatomic systems. This approach is formulated in momentum space to avoid Coulomb singularities and uses fast Fourier transforms to solve integral convolutions. Results for a number of simple systems are presented. 相似文献
18.
Tseng S Wong NB Liu PC Hsu JP 《Langmuir : the ACS journal of surfaces and colloids》2007,23(21):10448-10454
The electrical potential in a closed surface such as a cavity containing counterions only is derived for the cases of constant surface potential and constant surface charge density. The results obtained have applications in, for example, microemulsion-related systems in which ionic surfactants are introduced to maintain the stability of a dispersion and electroosmotic flow-related analysis. An analytical expression for the electrical potential is derived for a planar slit, and the methodology used is modified to derive approximate analytical expressions for spherical and cylindrical cavities. The higher the surface potential, the better the performance of these expressions. For the case where the surface potential is above ca. 50 mV, the performance of the approximate analytical expressions can further be improved by multiplying a correction function. 相似文献
19.
The local energy equation derived by Dawson and March (1984) following the study of Cohen and Frishberg (1976) involves the low-order density matrices. Using this equation, a formally exact route is laid down by means of which the exchange-correlation potential of density functional theory can be derived in terms of the third- and lower-order density matrices. An integral equation for an approximate exchange potential is obtained, which may be solved iteratively within the Slater-Kohn-Sham scheme. © 1997 John Wiley & Sons, Inc. 相似文献
20.
Noboru Tanaka 《Chemical physics letters》1978,54(3):551-553
Potential energy formula of polyatomic systems include many multiple exchange integrals. These multiple exchange integrals can be decomposed into “diatomic” integrals by using the Mulliken approximation. The potential surface can then be calculated numerically. The result of this work applied to the H3 system is presented. 相似文献