首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Color image encryption and decryption using fractional Fourier transform   总被引:1,自引:0,他引:1  
We propose the encryption of color images using fractional Fourier transform (FRT). The image to be encrypted is first segregated into three color channels: red, green, and blue. Each of these channels is encrypted independently using double random phase encoding in the FRT domain. The different fractional orders and random phase masks used during the process of encryption and decryption are the keys to enhance the security of the proposed system. The algorithms to implement the proposed encryption and decryption scheme are discussed, and results of digital simulation are presented. The technique is shown to be a powerful one for colored text encryption. We also outline the implementation of the algorithm and examine its sensitiveness to changes in the fractional order during decryption.  相似文献   

2.
We propose a method for the encryption of twin color images using fractional Fourier transform (FRT). The color images to be encrypted are converted into the indexed image formats before being processed through twin image encryption algorithm based on the FRT. The proposed algorithm uses one random code in the image domain and one random phase code in the FRT domain to perform double image encryption. The conversion of both the input RGB images into their indexed formats facilitates single-channel processing for each image, and is more compact and robust as compared to multichannel techniques. Different fractional orders, the random masks in image- and FRT domain are the keys to enhance the security of the proposed system. The algorithms to implement the proposed encryption and decryption schemes are discussed, and results of digital simulation are presented. We examine sensitivity of the proposed scheme against the use of unauthorized keys (e.g. incorrect fractional orders, incorrect random phase mask etc.). Robustness of the method against occlusion and noise has also been discussed.  相似文献   

3.
We present a new optical image encryption algorithm that is based on extended fractional Fourier transform (FRT) and digital holography technique. We can perform the encryption and decryption with more parameters compared with earlier similar methods in FRT domain. In the extended FRT encryption system, the input data to be encrypted is extended fractional Fourier transformed two times and random phase mask is placed at the output plane of the first extended FRT. By use of an interference with a wave from another random phase mask, the encrypted data is stored as a digital hologram. The data retrieval is operated by all-digital means. Computer simulations are presented to verify its validity and efficiency.  相似文献   

4.
5.
A new method for optical image encryption is introduced on the basis of two-dimensional (2-D) generalization of 1-D fractional Hartley transform that has been redefined recently in search of its inverse transform. We encrypt the image by two fractional orders and random phase codes. It has an advantage over Hartley transform, for its fractional orders can also be used as additional keys, and that, of course, strengthens image security. Only when all of these keys are correct, can the image be well decrypted. The optical realization is then proposed and computer simulations are also performed to confirm the possibility of the proposed method.  相似文献   

6.
Image encryption with fractional wavelet packet method   总被引:2,自引:0,他引:2  
Linfei Chen  Daomu Zhao   《Optik》2008,119(6):286-291
We introduce a new method called fractional wavelet packet transform to encrypt images in this paper, in which fractional orders and wavelet packet filter are its two series of keys. Fractional orders are additional keys in this method compared to wavelet packet encryptions. Selected image encryption is also proposed in this paper, and it is quite more flexible and effective than wavelet, fractional wavelet or wavelet packet encryptions. The possible optical implementation and digital computation are proposed. Computer simulations prove its feasibility.  相似文献   

7.
Zhengjun Liu  Jingmin Dai  Shutian Liu 《Optik》2010,121(19):1748-1751
We propose a single phase encoding scheme for encrypting image by using fractional Fourier transform. Single phase mask is designed in order to be symmetrical about certain direction, which can be used in the process of both encryption and decryption. A conjugate mask is not required in the image decryption process, which is very convenient for the practical application in optics. Moreover, the optical implementation of the image encryption and decryption is given. The implementing structure is composed of lens and spherical mirror. Numerical simulations have demonstrated the validity and security of the encryption algorithm.  相似文献   

8.
A multiple-image cryptosystem is proposed based on the cascaded fractional Fourier transform. During an encryption procedure, each of the original images is directly separated into two phase masks. A portion of the masks is subsequently modulated into an interim mask, which is encrypted into the ciphertext image; the others are used as the encryption keys. Using phase truncation in the fractional Fourier domain, one can use an asymmetric cryptosystem to produce a real-valued noise-like ciphertext, while a legal user can reconstruct all of the original images using a different group of phase masks. The encryption key is an indivisible part of the corresponding original image and is still useful during decryption. The proposed system has high resistance to various potential attacks, including the chosen-plaintext attack. Numerical simulations also demonstrate the security and feasibility of the proposed scheme.  相似文献   

9.
Optical image encryption using fractional Fourier transform and chaos   总被引:4,自引:2,他引:2  
We propose a new method for image encryption using fractional Fourier transform and chaos theory. Random phase masks are generated using iterative chaos functions. The input image is combined with the first random phase mask at the object plane and is then transformed using the fractional Fourier transform. After the first fractional Fourier transform, the second random phase mask, again generated by using the chaos functions, is used at the fractional plane. The second fractional Fourier transform operation is then carried out to obtain the encrypted image. Three types of chaos functions have been used: the logistic map, the tent map and the Kaplan–Yorke map. The mean square error and the signal-to-noise ratio between the decrypted image and the input image for the correct order and the incorrect order of the fractional Fourier transform have been calculated. The computer simulations are presented to verify the validity of the proposed technique.  相似文献   

10.
In this communication we propose performing two-dimensional correlation operation between phase-space representations based on the fractional Fourier transform, instead of correlating the signals themselves. A numerical examples clearly indicates superior discrimination performance.  相似文献   

11.
In this research, we thoroughly investigate the complete generalized fractional Fourier transform (CGFRFT) and draw the following conclusions that are different from the original literature: (1) The CGFRFT is not a generalized version, but a special case that ignores the marginal postulate; (2) If the period parameter is not a multiple of four, the CGFRFT can never perform a Fourier transform regardless of the value of the transform order. The simulation results of a rectangular signal support the above conclusions.  相似文献   

12.
A digital technique for multiplexing and encryption of four RGB images has been proposed using the fractional Fourier transform (FRT). The four input RGB images are first converted into their indexed image formats and subsequently multiplexed into a single image through elementary mathematical steps prior to the encryption. The encryption algorithm uses two random phase masks in the input- and the FRT domain, respectively. These random phase masks are especially designed using the input images. As the encryption is carried out through a single channel, the technique is more compact and faster as compared to the multichannel techniques. Different fractional orders, the random masks in input-, and FRT domain are the keys for decryption as well as de-multiplexing. The algorithms to implement the proposed multiplexing-, and encryption scheme are discussed, and results of digital simulation are presented. Simulation results show that the technique is free from cross-talk. The performance of the proposed technique has also been analyzed against occlusion, noise, and attacks using partial windows of the correct random phase keys. The robustness of the technique against known-, and chosen plain-text attacks has also been explained.  相似文献   

13.
An image encryption scheme has been presented by using two structured phase masks in the fractional Mellin transform (FrMT) plane of a system, employing a phase retrieval technique. Since FrMT is a non-linear integral transform, its use enhances the system security. We also add further security features by carrying out spatial filtering in the frequency domain by using a combination of two phase masks: a toroidal zone plate (TZP) and a radial Hilbert mask (RHM). These masks together increase the key space making the system more secure. The phase key used in decryption has been obtained by applying an iterative phase retrieval algorithm based on the fractional Fourier transform. The algorithm uses amplitude constraints of secret target image and the ciphertext (encrypted image) obtained from multiplication of fractional Mellin transformed arbitrary input image and the two phase masks (TZP and RHM). The proposed encryption scheme has been validated for a few grayscale images, by numerical simulations. The efficacy of the scheme has been evaluated by computing mean-squared-error (MSE) between the secret target image and the decrypted image. The sensitivity analysis of the decryption process to variations in various encryption parameters has also been carried out.  相似文献   

14.
Optical techniques have shown great potential in the field of information security to encode high-security images. Among several established methods, a double-random phase encryption technique (DRPE) for encoding a primary image into stationary white noise was developed by using the analogy between Fresnel diffraction patterns and the fractional Fourier transform (FrFT-DRPE). In this case, additional keys are obtained through the knowledge of the fractional orders of the FrFTs. In this work we propose an encoding setup for time-varying signals, mainly for short-haul fiber optics link applications, that can be considered as the temporal analogue of the spatial FrFT-DRPE. The behavior of the proposed method is analyzed by employing the Wigner distribution function. As a result, general expressions for both signal time width and spectral bandwidth, at all encryption stages are obtained. Numerical simulations have been carried out to illustrate the system performance. The obtained results indicate that this encryption method could be a good alternative to other well-established methods.  相似文献   

15.
基于分数阶Fourier变换的数字图像实值加密方法   总被引:2,自引:1,他引:1  
构造了一种新的保实化的分数阶Fourier变换,提出了一种基于该变换的数字图像实值加密方法。利用保实分数阶Fourier变换的保实特性和阶数可加性等完成了数字图像的加密与解密,明文和密文分别位于空域和由密钥决定的保实分数阶Fourier变换域中,具有较强的抗统计破译能力。密图是一个实值图像,便于显示和存储。仿真实验结果表明,该加密方法密钥简单,无数据膨胀,对参数敏感度高,具有一定的鲁棒性和安全性。在信息安全领域具有良好的研究前景和实用价值。  相似文献   

16.
Real color fractional Fourier transform holography is proposed based on fractional Fourier transform holography. The method of fabrication, the principle of reconstruction and the design of system parameters are discussed in detail. The experiments prove real color fractional Fourier transform holograms possess the better function of anti-counterfeit than common fractional Fourier transform holograms.  相似文献   

17.
A new color image encryption algorithm based on fractional Fourier transform (FrFT) and chaos is proposed. The colors of the original color image are converted to HSI (hue-saturation-intensity), and the S component is transformed by the random-phase encoding based on FrFT to obtain a new random phase. The I component is transformed by double random-phase encoding based on FrFT using the H component and the new random phase as two phase plates. Then chaos scrambling technology is used to encrypt the image, which makes the resulting image nonlinear and disorder both in spatial domain and frequency domain. Additionally, the ciphertext is not a color image but a combination of a gray image and a phase matrix, so the ciphertext has camouflage property to some extent. The results of numerical simulations demonstrate the effectiveness and the security of this algorithm.  相似文献   

18.
A new method for double image encryption is proposed that is based on amplitude-phase hybrid encoding and iterative random phase encoding in fractional Fourier transform (FrFT) domains. In the iterative random phase encoding operation, a binary random matrix is defined to encode two original images to a single complex-valued image, which is then converted into a stationary white noise image by the iterative phase encoding with FrFTs. Compared with the previous schemes that uses fully phase encoding, the proposed method reduces the difference between two original images in key space and sensitivity to the FrFT orders. The primitive images can be retrieved exactly by applying correct keys with initial conditions of chaotic system, the pixel scrambling operation and the FrFT orders. Computer simulations demonstrate that the encryption method has impressively high security level and certain robustness against data loss and noise interference.  相似文献   

19.
Novel optical image encryption scheme based on fractional Mellin transform   总被引:3,自引:0,他引:3  
A novel nonlinear image encryption scheme is proposed by introducing the fractional Mellin transform (FrMT) into the field of image security. As a nonlinear transform, FrMT is employed to get rid of the potential insecurity of the optical image encryption system caused by the intrinsic object-image relationship between the plaintext and the ciphertext. Different annular domains of the original image are transformed by FrMTs of different orders, and then the outputs are further encrypted by comprehensively using fractional Fourier transform (FrFT), amplitude encoding and phase encoding. The keys of the encryption algorithm include the orders of the FrMTs, the radii of the FrMT domains, the order of the FrFT and the phases generated in the further encryption process, thus the key space is extremely large. An optoelectronic hybrid structure for the proposed scheme is also introduced. Numerical simulations demonstrate that the proposed algorithm is robust with noise immunity, sensitive to the keys, and outperforms the conventional linear encryption methods to counteract some attacks.  相似文献   

20.
Weimin Jin  Caijie Yan 《Optik》2007,118(1):38-41
The optical image encryption based on multichannel fractional Fourier transform (FRT) and double random phase encoding technique is proposed. Optical principles of encoding and decoding are analyzed in detail. With this method, one can encrypt different parts of input image, respectively. The system security can be improved to some extent, not only because fractional orders and random phase masks in every channel can be set with freedom, but also because the system parameters among all channels are independent. Numerical simulation results of optical image encryption based on four channel FRT and double random phase encoding are given to verify the feasibility of the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号