首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Substitutional, continuous solid solution of the general formula Y2–xYbxO3 was obtained from the mixture of Y2O3 and Yb2O3 oxides, for the first time by the mechanochemical method in a high-energy ball milling. The monophasic samples of nanocrystalline solid solution for x?>?0.00 and x?<?2.00 were examined by the methods: XRD, DTA, SEM, IR and UV–Vis–DR. As follows from the results, the solid solution crystallizes in cubic system and is isostructural with Y2O3 and Yb2O3. The solution is stable in the air atmosphere up to at least 900°C, and its decomposition temperature decreases with the increase in x, that is, with decreasing number of Yb3+ ions replacing Y3+ ions in the crystal lattice of Y2O3. The energy band gap estimated for the solid solution varies from?~?5.30 eV for x?=?0.50 to?~?4.90 eV for x?=?1.50, which means that it is an insulator.

  相似文献   

2.
Uniform and well-defined Lu2O3 and Lu2O3:Eu3+ microarchitectures have been successfully synthesized via a green and facile ionic liquid-based hydrothermal method followed by a subsequent calcination process. Novel 3D micro-rodbundles and 1D microrods of Lu2O3 and Lu2O3:Eu3+ were controllably obtained through this method. X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy and photoluminescence spectra were used to characterize the micromaterials. The proposed formation mechanisms have been investigated on the basis of a series of SEM studies of the products obtained at different hydrothermal durations. The results indicated that hydrothermal temperature and the ionic liquid-tetrabutylammonium hydroxide were two key factors for the formation as well as the morphology control of the Lu2O3 and Lu2O3:Eu3+ microarchitectures.  相似文献   

3.
Phase equilibria in the BaO-Bi2O3-B2O3 system have been investigated by X-ray powder diffraction analysis and DTA. Quasi-binary sections have been determined, and an isothermal section of the system in the subsolidus region has been constructed. The BaO-Bi2O3-B2O3 ternary system has been divided into 22 triangles of coexisting phases. It has been found that four bismuth barium borates exist, namely, Ba3BiB3O9, BaBi2B4O10, BaBiB11O19, and BaBiBO4. Ba3BiB3O9 undergoes a phase transition at 850°C and exists up to 885°C, where it decomposes in the solid state. BaBiB11O19 and BaBi2B4O10 melt congruently at 807 and 730°C, respectively. BaBiBO4 melts incongruently at 780°C. X-ray powder diffraction data for the low-temperature polymorph of Ba3BiB3O9 are presented.  相似文献   

4.
Phase equilibria in the SrO-Bi2O3-B2O3 system were studied using powder X-ray diffraction (XRD) and differential thermal analysis (DTA). Quasi-binary sections were determined, and an isothermal section of the system in the subsolidus region at 600°C was constructed using the crossing spections method. A new ternary compound was found: SrBi2B4O10. The existence of SrBi2B2O7 was verified. Bi2O3-SrB2O4 and Bi4B2O9-2SrO: 3B2O3 polytherms were constructed.  相似文献   

5.
《Vibrational Spectroscopy》2000,22(1-2):169-173
In the Y2O3:3Al2O3:4B2O3 system infrared absorption spectroscopy and X-ray diffraction have been used to study the solid-state reactions in the 600–1300°C temperature range. The expected YAl3(BO3)4 formation (whose optimum temperature is at about 1150°C) was proceeded and accompanied by the appearance of YBO3 and Al4B2O9 intermediate phases. At higher temperatures the Al18B4O33 phase was also identified with both methods. Based on these results, some chemical reactions were suggested.  相似文献   

6.
Ternary CuO-ZrO2-Al2O3 catalysts promoted by palladium or gold were prepared and tested in CO hydrogenation reaction at 260°C under elevated pressure (4.8 MPa). The promotion effect of palladium or gold addition on the physicochemical and catalytical properties of CuO-ZrO2-Al2O3 catalysts in methanol synthesis (MS) was studied. The catalysts were characterized by BET, XRD, TPR-H2, TPD-NH3 methods. The BET results showed that the ternary system CuO-ZrO2-Al2O3 had the largest specific surface area, cumulative pore volume and average pore size in comparison with the promoted catalysts. The yield of methanol can be given through the following sequence: 5%Pd/CuO-ZrO2-Al2O3 > CuO-ZrO2-Al2O3 > 2%Au/CuO-ZrO2-Al2O3. We also found that the presence of gold or palladium on catalyst surface has strong influence on the reaction selectivity. The high selectivity of gold doped ternary catalyst is explained by the gold-oxide interface sites created on the catalyst surface and the acidity of those systems. The higher selectivity to methanol in the case of the palladium catalyst is explained by the spillover effect between Pd and CuO.   相似文献   

7.
The phase equilibria in the concentration triangle Bi2O3-BaB2O4-B2O3 of the BaO-Bi2O3-B2O3 system have been investigated by X-ray powder diffraction and DTA. Barium bismuth borates of the composition BaBi2B4O10 and BaBiB11O19 have been found to exist. These borates melt at 730 and 807°C, respectively. The quasi-binary sections have been determined. It has been shown that the isothermal section of the Bi2O3-BaB2O4-B2O3 in the subsolidus region at 600°C is characterized by 13 triangles of coexisting phases.  相似文献   

8.
Crystallization in the Ho2O3(Yb2O3)GeO2KFH2O systems has been investigated under hydrothermal conditions. Crystallization fields of the crystalline phases have been determined. Single crystals of Ho2Ge2O7, Yb2Ge2O7 (two types), K2HoF5, K2YbF5, KxYbyGepOq (P-type), Ho(OH)3, Yb(OH)3, and K2Ge4O9 have been obtained. The germanates synthesized have been studied by X-ray analysis and infrared-spectroscopy. Diorthogermanate Yb2Ge2O7 has been found to crystallize in two structural types; the first is characterized by the usual structure that is typical for rare-earth germanates, the second is new for germanates of rare-earth elements. High chemical resistance is typical of these crystals. The P-type germanate also has a new type of structure among rare earth germanates. Some suggestions are made as to the structure of these new germanates on the basis of X-ray and ir-spectroscopic data.  相似文献   

9.
Phase equilibria in the SrO-Bi2O3-B2O3 system have been investigated by X-ray powder diffraction analysis and DTA. Ternary compounds SrBiBO4 and Sr7Bi8B18O46 congruently melting at 820 ± 5°C and 760 ± 5°C have been found. Quasi-binary sections are determined and the isothermal section of the system in the region Bi2O3-Sr2Bi2O6-Sr3B2O6-B2O3 at 600°C has been constructed.  相似文献   

10.
The catalytic properties of the system Fe2O3-Ga2O3 in high-temperature oxidation of ammoniaand the influence exerted by the phase composition of the system on the physicochemical, catalytic properties of the catalysts were studied.  相似文献   

11.
The Er2O3-Rh2O3 system was studied by the annealing and quenching method using X-ray phase, thermal, and chemical analyses. A schematic subsolidus diagram of phase relationships was constructed.  相似文献   

12.
The Gd2O3-Rh2O3 system is studied using the anneal-and-quench technique, X-ray powder diffraction, thermal analysis, and chemical analysis. A schematic subsolidus phase diagram is designed. One double oxide of composition GdRhO3 is found to exist. It was characterized using some physicochemical methods.  相似文献   

13.
Reactivity of FeVO4 towards Ni2V2O7 and Ni3V2O8 in the solid state was investigated. On the base of XRD and DTA results, phase diagrams in subsolidus area of the FeVO4-Ni2V2O7 and FeVO4-Ni3V2O8 intersections of the ternary system NiO-V2O5-Fe2O3 have been worked out and the phase diagram of this ternary system in subsolidus area in the whole component concentration range has been verified. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
In the ternary system Y2O3?Na2O?P2O5, the partial system Y(PO3)3?NaPO3?P2O5 was examined by means of differential thermal analysis and X-ray powder diffraction; its phase diagram is given.  相似文献   

15.
The effect of ferric and manganese oxides dopants on thermal and physicochemical properties of Mn-oxide/Al2O3 and Fe2O3/Al2O3 systems has been studied separately. The pure and doped mixed solids were thermally treated at 400–1000°C. Pyrolysis of pure and doped mixed solids was investigated via thermal analysis (TG-DTG) techniques. The thermal products were characterized using XRD-analysis. The results revealed that pure ferric nitrate decomposes into Fe2O3 at 350°C and shows thermal stability up to1000°C. Crystalline Fe3O4 and Mn3O4phases were detected for some doped solids precalcined at 1000°C. Crystalline γ-Al2O3 phase was detected for all solids preheated up to 800°C. Ferric and manganese oxides enhanced the formation of α-Al2O3 phase at1000°C. Crystalline MnAl2O4 and MnFe2O4 phases were formed at 1000°C as a result of solid–solid interaction processes. The catalytic behavior of the thermal products was tested using the decomposition of H2O2 reaction. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
The synthesis of new compounds based on Bi2O3 is investigated because they can be used as new colour inorganic pigments. Chemical compounds of the Bi2-xYx/2Zr3x/8O3 type were synthetised. The host lattice of these pigments is Bi2O3 that is doped by Y3+ and Zr4+ ions. The incorporation of doped ions provides interesting colours and contributes to a growth of the thermal stability of these compounds. The simultaneous TG-DTA measurements were used for determination of the temperature region of the pigment formation and thermal stability of pigments. This paper also contains the results of the pigment characterization by X-ray powder diffraction and their colour properties.  相似文献   

17.
The synthesis of new compounds based on Bi2O3 is investigated because they can be used as new ecological inorganic pigments. Chemical compounds of the Bi2−xErx/2Zr3x/8O3 type were synthetized. The host lattice of these pigments is Bi2O3 that is doped by Er3+ and Zr4+ ions. The incorporation of doped ions provides interesting colours and contributes to a growth of the thermal stability of these compounds. The simultaneous TG-DTA measurements were used for determination of the temperature region of the pigment formation and thermal stability of pigments. This paper also contains the results of the pigment characterization by X-ray powder diffraction and their colour properties.  相似文献   

18.
We propose a reaction model for the synthesis of YBa2Cu4O8 under normal pressure conditions, which contains 4 partial reaction steps. In a first step bariumnitrate and copperoxide react to Ba2Cu3O5+δ. This substance will be formed for each mixtures Ba:Cu=2∶3...3∶2. The following two partial reaction steps are connected to Ba2Cu3O5+δ, which reacts with Y2O3 and CuO to YBa2Cu4O8 or decomposes to BaCuO2 and CuO. In a last step parts of BaCuO2 reacts with Y2O3 and CuO to YBa2Cu4O8.  相似文献   

19.
Due to unique properties, KCa2Nb3O10 compound has received great attention worldwide. High-temperature solid-state reaction is the common route for the synthesis of this compound. In order to propose a new low-temperature method (i.e. hydrothermal synthesis), which could improve the final properties of KCa2Nb3O10, this study has been planned and performed. The preliminary experiments in KOH-Nb2O5 and Ca(OH)2-Nb2O5 systems revealed that KCa2Nb3O10 could be hydrothermally synthesized from a KOH-Ca(OH)2-Nb2O5 system using an alkaline condition (i.e. 5 M < KOH <10 M). However, the experimental results showed that the product only consisted of KNbO3 and Ca2Nb2O7 phases. To initiate the reaction between KNbO3 and Ca2Nb2O7, the obtained KNbO3-Ca2Nb2O7 mixture was heat-treated in an air atmosphere. The results showed that KCa2Nb3O10, with a high crystallinity and good purity, has been successfully obtained at 800 °C. This temperature is the lowest temperature, reported for the synthesis of KCa2Nb3O10 compound so far. The SEM investigations revealed that the obtained KCa2Nb3O10 powder has plate-like morphology due to its layered structure.  相似文献   

20.
Following our previous research, this work is dedicated to the study of phase formation in the subsolidus domain of the Bi2O3-PbO-CaO system. Former investigations performed by DTA/TGA and XRD have pointed out that under non-isothermal conditions only the formation of binary compounds occurs. Under such conditions these compounds could be non-equilibrium phases. In order to establish the conditions of formation of equilibrium phases, a study of the Bi2O3-PbO-CaO system, in isothermal conditions, was carried out. The results obtained in isothermal conditions have confirmed the presence of Bi2O3-rich solid solutions and Ca2PbO4 as main equilibrium phases. An attempt to represent the phase relations of the mentioned system at 700°C should be equally mentioned. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号