首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
用柠檬酸配合法制备REFeO_3(RE=La,Pr,Nd,Sm,Eu,Gd,及Dy).用XRD测定了REFeO_3的钙钛矿结构.用CO还原脉冲及O_2氧化脉冲证实REFeO_3上CO氧化为Redox机理.用外循环流动无梯度反应器研究CO氧化稳态动力学.动力学方程中的参数用正交设计法估计.催化剂用CO还原的速率常数k_1比还原了的催化剂用O_2再氧化速率常数k_2要大,k_1/k_2值在4.22~133之间,这说明在REFeO_3上CO氧化的控制步骤为还原催化剂的再氧化.用脉冲法得到的CO转化率(X_(co)比O_2的转化率(X_o_2)要大.脉冲法证实稳态动力学控制步骤的结论.Redox动力学方程式(9)可简化为控制步骤方程式(11).催化剂还原速度常数与一定P_(co)及P_o_2下的反应速度呈近似的线性关系.在REFeO_3上CO氧化存在补偿效应.  相似文献   

2.
PrFeO3用柠檬酸络合制备。PrFeO3经1000℃灼烧4h为钙钛矿结构,它经XRD分析所验证。用CO还原催化剂及用O2再氧化还原催化剂的脉冲实验证实,PrFeO3上CO氧化按Redox机理进行。用CO还原催化剂脉冲动力学方程,测定CO还原步骤的速常数及其活化能。用外循环流动无梯度反应器研究了PrFeO3上CO氧化稳态动力学,其实验结果服从Redox机理动力学方程。并用正交设计法求出动力学参数值  相似文献   

3.
用玻璃外循环无梯度反应器研究了在Fe-Zn-Mg-Cr尖晶石结构催化剂上丁烯-2氧化脱氢动力学。丁烯-2氧化脱氢动力学服从三步骤Redox机理。用脉冲法研究了催化剂用丁烯-2还原及还原催化剂用氧再氧化步骤。用脉冲法测定了丁烯-2吸附热。丁烯-2及丁二烯深度氧化动力学服从经验速度方程。用正交设计法估计了动力学方程的参数。丁烯-2氧化脱氢速度比丁烯-1要快。  相似文献   

4.
俞启全  金韵  徐明亭 《化学学报》1990,48(6):523-527
用玻璃外循环无梯度反应器研究了在Pt/Al2O3催化剂上丙醇深度氧化稳态动力学。丙醇深度氧化稳态动力学报从L-H机理模型。用正交设计法估计了动力学方程中的参数。用脉冲法测定了丙醇、氧及CO2的吸附热, 其数值与正交法的计算值一致。用脉冲法研究了丙醇在催化剂上吸附量与停留时间的关系, 实验结果服从式(5)经验规律, 当反应条件强化时观察到在Pt/Al2O3催化剂上丙醇深度氧化的振荡现象。  相似文献   

5.
用柠檬酸络合法制备TbFeO3。用XRD测定TbFeO3的钙钛矿结构。用脉冲法测定了TbFeO3还原步骤的速度常数。用外缩环流动无梯度反应器研究了在TbFeO3上CO氧化稳态动力学。实验结果服从Redox机理方程。用正交设计法估计Redox机理方程中的动力学参数。还原催化剂再氧化是TbFeO3上CO氧化的控制步骤。  相似文献   

6.
用外循环无梯度反应器研究了甲醇氧化制甲醛的动力学。动力学实验结果用二步骤Redox模型描述。动力学方程中的参数用线性最小二乘法估计。甲醇的反应级数m和氧的反应级数n与温度有关, m与n的和接近于1, 反应级数的变化可用Redox机理动力学解释。不同处理催化剂的XPS分析结果证实, 反应按Redox机理进行。  相似文献   

7.
在Pt/Al2O3催化剂上乙醇深度氧化的稳态及非稳态动力学   总被引:1,自引:0,他引:1  
俞启全  金韵 《分子催化》1989,3(2):89-95
用玻璃外循环无梯度反应器研究了在Pt/Al_2O_3催化剂上乙醇深度氧化稳态动力学.乙醇深度氧化稳态动力学可用乙醇及氧吸附、CO_2吸附阻碍的L-H模型描述.动力学方程(1)式中的参数用正交设计法描述.用脉冲法测定了乙醇、氧及CO_2的吸附热.在实验中观察到在Pt/Al_2O_3催化剂上乙醇深度氧化的振荡现象.  相似文献   

8.
中位-四(对-磺基苯基)卟啉的铁、锰配合物(FeTPPS和MnTPPS)用作NADH氧化的催化剂,均相溶液中的反应动力学用紫外可见光谱测定。结果表明,在除氧的中性溶液中FeTPPS和MnTPPS降低了NADH在玻碳电极上氧化的过电位,过程用EC再生机理解释。在氧饱和的溶液中MTPPS起电子转移中介体的作用促进NADH氧化,其还原态被O~2氧化而生。测得FeTPPS和NADH反应的速率常数为3.3mol^-^1.L.s^-^1,而MnTPPS和NADH反应的速率常数约为FeTPPS的1/2。讨论了MTPPS作为NADH仿生氧化催化剂的前景。  相似文献   

9.
用载流法研究了Mo~4O~12(O~2) [简作Mo~4(O~2)~2] 与HSO 在酸性条件(4×10^-3~0.5mol·dm^-3)下的反应动力学,并提出了反应机理.反应经历下列历程:Mo~4(O~2)~2+H~2O Mo~4(O~2)(OOH)(k~1,k~-1) Mo~4(O~2)(OOH)+HSO Mo~4(O~2)OOSO~2+H~2O(k~2,k~-2) Mo~4(O~2)OOSO~2+H~2O Mo~4(O~2)+H~2SO~4(k~1,k~-1)中间产物Mo~4(O~2)再以相同机理继续与HSO 反应.由机理,得到了[S(IV)/k~观察与[H^+],[S(IV)]之间的线性关系式以及20℃时的动力学参数:K~1=7.4±0.3dm^3·mol^-1·S^-1,k~-1/k~2=(5.8±0.5)×10^-2和k~-2/k~3=(1.4×0.8)×10^-4.配合物Mo~4(O~2)~2中(O~2)基质子化是决定反应速度的关键步骤.用此机理讨论了Thompson研究的 MoO(O~2)~2与HSO 的反应结果.  相似文献   

10.
用载流法研究了Mo~4O~12(O~2) [简作Mo~4(O~2)~2] 与HSO 在酸性条件(4×10^-3~0.5mol·dm^-3)下的反应动力学,并提出了反应机理.反应经历下列历程:Mo~4(O~2)~2+H~2O Mo~4(O~2)(OOH)(k~1,k~-1) Mo~4(O~2)(OOH)+HSO Mo~4(O~2)OOSO~2+H~2O(k~2,k~-2) Mo~4(O~2)OOSO~2+H~2O Mo~4(O~2)+H~2SO~4(k~1,k~-1)中间产物Mo~4(O~2)再以相同机理继续与HSO 反应.由机理,得到了[S(IV)/k~观察与[H^+],[S(IV)]之间的线性关系式以及20℃时的动力学参数:K~1=7.4±0.3dm^3·mol^-1·S^-1,k~-1/k~2=(5.8±0.5)×10^-2和k~-2/k~3=(1.4×0.8)×10^-4.配合物Mo~4(O~2)~2中(O~2)基质子化是决定反应速度的关键步骤.用此机理讨论了Thompson研究的 MoO(O~2)~2与HSO 的反应结果.  相似文献   

11.
Summary Catalytic fractional conversions of carbon monoxide to carbon dioxide over Pt−Rh alloy catalysts in the presence of excess oxygen, under steady-state or non steady-state conditions, as well as corresponding rate constants for the CO oxidation reaction were measured by using the reversed-flow gas chromatographic technique. From the variation of the conversions with temperature, maximum values of conversions were found, which depend on the catalysts nature (Pt content), while from the variation of the rate constants with temperature, activation energies for the CO oxidation reaction were determined, which also depend on the catalyst Pt content. The results suggest a synergism between Pt and Rh in the Pt−Rh bimetallic catalysts in accordance with previous works, showing that reversed-flow gas chromatography can be used with simplicity and accuracy for the kinetic study of the CO oxidation reaction, which is of technological importance for the control of air pollution.  相似文献   

12.
Dry reforming of methane by CO2 using nickel ferrite as precursor of catalysts was investigated.Nickel ferrite crystalline particles were prepared by coprecipitation of nitrates with NaOH or ammonia followed by calcination,or by hydrothermal synthesis without calcination step.The textural and structural properties were determined by a number of analysis methods,including X-ray diffraction (XRD),Raman spectroscopy and X-ray photoelectron spectroscopy (XPS),among which X-ray diffraction (XRD) was at room and variable temperatures.All synthesized oxides showed the presence of micro or nanoparticles of NiFe2O4 inverse spinel,but Fe2O3 (hematite) was also present when ammonia was used for coprecipitation.The reducibility by hydrogen was studied by temperature-programmed reduction (TPR) and in situ XRD,which showed the influence of the preparation method.The surface area (BET),particle size (Rietveld refinement),as well as surface Ni/Fe atomic ratio (XPS) and the behavior upon reduction varied according to the synthesis method.The catalytic reactivity was investigated using isopropanol decomposition to determine the acid/base properties.The catalytic performance of methane reforming with CO2 was measured with and without the pre-treatment of catalysts under H2 in 650-800 C range.The catalytic conversions of methane and CO2 were quite low but they increased when the catalysts were pre-reduced.A significant contribution of reverse water gas shift reaction accounted for the low values of H2 /CO ratio.No coking was observed as shown by the reoxidation step performed after the catalytic reactions.The possible formation of nickel-iron alloy observed during the study of reducibility by hydrogen was invoked to account for the catalytic behavior.  相似文献   

13.
The kinetics for the oxidation of carbon monoxide in the presence of excess oxygen over Pt-Rh alloy catalysts were studied by using the reversed-flow gas chromatography technique. Suitable mathematical analysis equations were derived by means of which the rate constants for the oxidation reaction of carbon monoxide, as well as for the adsorption and desorption of the reactant CO on the catalysts pure Pt, 75 atom% Pt+25 atom% Rh, 50 atom% Pt+50 atom% Rh, 25 atom% Pt+75 atom% Rh and pure Rh supported on SiO2 were determined. All the catalysts show a maximum rate constant for the production of CO2 at a characteristic temperature close to that found in the literature. The rate constants for the adsorption of CO increase generally with increasing temperature, while those for the desorption decrease with increasing temperature. From the variation of the rate constants with temperature activation energies for the oxidation reaction and adsorption of CO were determined, which are sensitive to the composition of the catalytic surface. The appearance of CO2 and carbon, when introducing pure CO into the column with the catalysts, verified a partial dissociative adsorption (e.g., disproportionation) of CO on the catalysts used. The latter indicates a mechanism for the CO oxidation through a partial dissociative adsorption of CO followed by the reaction of adsorbed CO molecules with adsorbed O atoms.  相似文献   

14.
Selective CO oxidation (SCO) has attracted scientific and technological interest due to its application to the operation of proton electrolyte membrane fuel cells (PEM-FCs). CO adsorption, being an elementary step of SCO, is studied over silica supported monometallic Rh and Rh0.50 + Pt0.50 alloy catalysts, under various hydrogen atmospheres, namely: 25% H2 + 75% He, 50% H2 + 50% He and 75% H2 + 25% He carrier gas mixture compositions. The investigation of CO adsorption is done by utilizing reversed-flow gas chromatography (RF-GC). As a result rate constants for the adsorption (k1), desorption (k(-1)) and irreversible CO binding (k2) over the studied catalysts as well as the respective activation energies are determined. The variation of the rate constants and the activation energies against the nature of the used catalyst (monometalic or alloy) and the amount of hydrogen in the carrier gas gives useful information for the selectivity as well as the activity of CO oxidation over group VIII noble metals. At low temperatures and under H2-rich conditions compatible with the operation of PEM fuel cells the activity of the monometallic and the alloy catalysts is expected to be similar, however the selectivity of Rh0.50 + Pt0.50 alloy catalyst is expected to be higher, making Pt-Rh alloy catalyst as a better candidate for CO preferential oxidation (PROX). The low energy barrier values found in the present work, most likely are referred to high surface amounts of CO. The desorption barriers determined are in any case much lower than the respective activation energies found for CO desorption in the absence of hydrogen indicating a H2-induced desorption, which can explain the observed in the literature rate enhancement of SCO oxidation.  相似文献   

15.
Gas phase catalytic reactions involving the reduction of N(2)O and oxidation of CO were observed at the molecular level on isolated neutral rhodium clusters, Rh(n) (n = 10-28), using mass spectrometry. Sequential oxygen transfer reactions, Rh(n)O(m-1) + N(2)O → Rh(n)O(m) + N(2) (m = 1, 2, 3,…), were monitored and the rate constant for each reaction step was determined as a function of the cluster size. Oxygen extraction reactions by a CO molecule, Rh(n)O(m) + CO → Rh(n)O(m-1) + CO(2) (m = 1, 2, 3,…), were also observed when a small amount of CO was mixed with the reactant N(2)O gas. The rate constants of the oxygen extraction reactions by CO for m ≥ 4 were found to be two or three orders of magnitude higher than the rate constants for m ≤ 3, which indicates that the catalytic reaction proceeds more efficiently when the reaction cycles turn over around Rh(n)O(m) (m ≥ 4) than around bare Rh(n). Rhodium clusters operate as more efficient catalysts when they are oxidized than non- or less-oxidized rhodium clusters, which is consistent with theoretical and experimental studies on the catalytic CO oxidation reaction on a rhodium surface.  相似文献   

16.
常温常湿条件下Au/MeO~x催化剂上CO氧化性能   总被引:12,自引:0,他引:12  
王桂英  张文祥  蒋大振  吴通好 《化学学报》2000,58(12):1557-1562
利用共沉淀法制备了Au/MeO~x催化剂(Me=Al,Co,Cr,Cu,Fe,Mn,Ni,Zn)。在常温常湿条件下,考察了不同氧化物负载的金基催化剂的CO氧化性能。结果表明,氧化物种类对催化剂的活性和稳定性均有较大的影响。Cu,Mn,Cr等氧化物负载的金基催化剂的活性较差,而Zn,Fe,Co,Ni,Al等金属氧化物负载的金基催化剂可将CO完全氧化,又具有一定的稳定性,在相同反应条件下,CO完全转化时的稳定性顺序为Au/ZnO>Au/α-Fe~2O~3>Au/Co~3O~4>Au/γ-Al~2O~3≈Au/NiO。还发现水对Au/MnO~x催化剂的活性和稳定性有负作用,而对180℃焙烧制备的Au/ZnO-180催化剂的活性和稳定性均有明显的湿度增强作用。  相似文献   

17.
This study presented results on reduction of alumina supported chromium and platinum–chromium catalysts using temperature programmed reduction method (TPR). It has been shown that catalysts after earlier oxidation step but without calcinations one undergo reduction in lower temperature in comparison to calcined only catalysts. Moreover, addition platinum to Cr/Al2O3 catalysts also caused decrease of reduction temperature. It has been observed that over the examined catalysts oxidation CO to CO2 and reduction CO to CH4 occurs. However, on Pt–Cr catalysts both reactions proceed at lower temperature compare to Cr catalysts.  相似文献   

18.
The reduction mechanism of the title cluster has been investigated by means of cyclic voltammetry (CV), rotating disk electrode (RDE) voltammetry, and coulometry. The 2-electron reduction proceeds via two routes simultaneously. The first one involves two 1-electron reduction steps, followed by an iodide elimination to form the neutral Pd(3)(dppm)(3)(CO)(0) cluster (EEC mechanism). The second one is a 1-electron reduction process, followed by an iodide elimination, then by a second 1-electron step (ECE mechanism) to generate the same final product. Control over these two competitive mechanisms can be achieved by changing temperature, solvent polarity, iodide concentration, or sweep rate. The reoxidation of the Pd(3)(dppm)(3)(CO)(0) cluster in the presence of iodide proceeds via a pure ECE pathway. The overall results were interpreted with a six-member square scheme, and the cyclic and RDE voltammograms were simulated, in order to extract the reaction rate and equilibrium constants for iodide exchange for all three Pd(3)(dppm)(3)(CO)(I)(n)() (n = +1, 0, -1) adducts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号