首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A graphite furnace atomic absorption spectrometric procedure for the determination of mercury is presented, in which the samples are suspended in a solution containing hydrofluoric and nitric acids. Silver nitrate (4% m/v) and potassium permanganate (3%) are incorporated, in the order specified, and aliquots are directly introduced into the graphite furnace. A fast heating programme with no conventional pyrolysis step is used. The detection limit for mercury in a 125 mg ml−1 suspension is 0.1 μg g−1. Calibration is performed by using aqueous standards. The reliability of the procedure is proved by analysing certified reference materials.  相似文献   

2.
A method for the determination of total selenium in serum samples by graphite furnace atomic absorption spectrometry was evaluated. The method involved direct introduction of 1:5 diluted serum samples (1% v/v NH4OH+0.05% w/v Triton X-100®) into transversely heated graphite tubes, and the use of 10 μg Pd+3 μg Mg(NO3)2 as chemical modifier. Optimization of the modifier mass and the atomization temperature was conducted by simultaneously varying such parameters and evaluating both the integrated absorbance and the peak height/peak area ratio. The latter allowed the selection of compromise conditions rendering good sensitivity and adequate analyte peak profiles. A characteristic mass of 49 pg and a detection limit (3s) of 6 μg 1−1 Se, corresponding to 30 μg l−1 Se in the serum sample, were obtained. The analyte addition technique was used for calibration. The accuracy was assessed by the determination of total selenium in Seronorm™ Trace Elements Serum Batch 116 (Nycomed Pharma AS). The method was applied for the determination of total selenium in ten serum samples taken from individuals with no known physical affection. The selenium concentration ranged between 79 and 147 μg l−1, with a mean value of 114±22 μg l−1.  相似文献   

3.
A THGA graphite furnace with Zeeman background correction has been used to determine platinum content in copper ore and copper concentrate at the part per billion (ppb) concentration level. Two different procedures for the separation of trace platinum have been applied: (i) use of an ion exchange resin; and (ii) a two-stage method based on platinum separation on inorganic carriers. The influence of interfering elements in the matrix (Cu, Pb, Fe, Ti, V, Au, Pd, Ir, Rh and Al) has been examined using a graphite furnace. It was found that the presence of Cu (12.5–100 mg l−1), Pb (100–500 mg l−1), Fe (100–2000 mg l−1), Ti (25–100 mg l−1), V (25–100 mg l−1), Au (25–300 mg l−1), Pd (20–250 mg l−1), Ir (0.5–3.5 mg l−1) and Rh (0.025–1 mg l−1) in the samples analyzed has no effect on the platinum absorption signal when using a recommended temperature program (Tpyr=1300°C, Tat=2450°C). Spectral interference was observed, which was due to aluminum, as a result of the close neighborhood of the Pt 265.945-nm and Al 266.039-nm lines. This interference could not be eliminated by the Zeeman background correction.  相似文献   

4.
A procedure for the determination of As, Pb, Se and Sn in sediment slurries by electrothermal vaporization inductively coupled plasma mass spectrometry is proposed. The slurry, 1 mg ml−1, is prepared by mixing the sample ground to a particle size 50 μm with 5% v/v nitric and 1% v/v hydrofluoric acids in an ultrasonic bath. The slurry was homogenized with a constant flow of argon in the autosampler cup, just before transferring an aliquot to the graphite furnace. The tube was treated with Ru as a permanent modifier, and an optimized mass of 1 μg of NaCl was added as a physical carrier. The pyrolysis temperature was optimized through pyrolysis curves, and a compromised temperature of 800 °C was used; the vaporization temperature was 2300 °C. The effect of different acid concentrations in the slurry on the analyte signal intensities was also evaluated. The accuracy of the method was assured by the analysis of certified reference sediments MESS-2, PACS-2 and HISS-1 from the National Research Council Canada, SRM 2704 and SRM 1646a from the National Institute of Standards and Technology and RS-4 from a round robin test, using external calibration with aqueous standards prepared in the same medium as the slurries. The obtained concentrations were in agreement with the certified values according to the Student's t-test for a confidence level of 95%. The detection limits in the samples were: 0.17 μg g−1 for As; 0.3 μg g−1 for Pb; 0.05 μg g−1 for Se and 0.28 μg g−1 for Sn. The precision found for the different sediment samples, expressed as R.S.D. was 1–8% for As, 2–9% for Pb, 6–12% for Se and 3–8% for Sn (n=5).  相似文献   

5.
Rojas FS  Ojeda CB  Pavón JM 《Talanta》2006,70(5):979-983
A flow injection (FI) system was used to develop an efficient on-line sorbent extraction preconcentration system for palladium by graphite furnace atomic absorption spectrometry (GFAAS). The investigated metal was preconcentrated on a microcolumn packed with 1,5-bis(di-2-pyridyl)methylene thiocarbohydrazide immobilized on silica gel (DPTH-gel). The palladium is eluted with 40 μl of HCl 4 M and directly introduced into the graphite furnace. The detection limit for palladium under the optimum conditions was 0.4 ng ml−1. This procedure was employed to determine palladium in different samples.  相似文献   

6.
Arsenic was determined in gold by flow injection hydride generation inductively coupled plasma-mass spectrometry following a batch mode reductive precipitation removal of the interfering gold matrix. A solution of potassium iodide, L-ascorbic acid, and hydrochloric acid was used as the reluctant. The recovery of gold by precipitation and filtration was 99 ± 3%. The detection limit for arsenic in gold was 55 ng g−1 in the solid. The concentration of arsenic that was determined in the Royal Canadian Mint gold sample FAU-10 was 29.7 μg g−1 in the solid; this value was indistinguishable, with 95% confidence, from values determined at the Royal Canadian Mint by graphite furnace atomic absorption spectrometry and by inductively coupled plasma-mass spectrometry. The standard deviation for four replicate determinations of the arsenic in FAU-10 was 0.972 μg g−1 in the solid.  相似文献   

7.
Volatile species of Ag, Cu, Cd, and Zn were generated at room temperature by the addition of sodium tetrahydroborate (III) to an acidified solution of the analytes. The vapor-phase species were rapidly transported to a pre-heated graphite tube, the surface of which was previously treated with Ir as a permanent chemical modifier. The volatile species were trapped at the Ir treated tube surface, and the further heating of the furnace permits their determination by atomic absorption spectrometry. A univariate approach was used to achieve optimized conditions and derive the figures of merit. The limits of detection based on a 3σb criterion were 10 (1); 0.006 (6×10−4); 28 (2.8) and 1.1 (0.11) ng (μg ml−1) for Ag, Cd, Cu and Zn, respectively. Precision of replicate measurements was typically approximately 10% R.S.D. Using a transfer line as short as possible should minimize losses of analyte during the transport to the graphite furnace. The overall efficiency of the volatile species generation and trapping process estimated for silver was 13%.  相似文献   

8.
A flow injection on-line sorption preconcentration electrothermal atomic absorption spectrometric system for fully automatic determination of lead in water was investigated. The discrete non-flow-through nature of ETAAS, the limited capacity of the graphite tube and the relatively large volume of the knotted reactor (KR) are obstacles to overcome for the on-line coupling of the KR sorption preconcentration system with ETAAS. A new FI manifold has been developed with the aim of reducing the eluate volume and minimizing dispersion. The lead diethyldithiocarbamate complex was adsorbed on the inner walls of a knotted reactor made of PTFE tubing (100 cm long, 0.5 mm i.d.). After that, an air flow was introduced to remove the residual solution from the KR and the eluate delivery tube, then the adsorbed analyte chelate was quantitatively eluted into a delivery tube with 50 μl of ethanol. An air flow was used to propel the eluent from the eluent loop through the reactor and to introduce all the ethanolic eluate onto the platform of the transversely heated graphite tube atomizer, which was preheated to 80°C. With the use of the new FI manifold, the consumption of eluent was greatly reduced and dispersion was minimized. The adsorption efficiency was 58%, and the enhancement factor was 142 in the concentration range 0.01–0.05 μg l−1 Pb at a sample loading rate of 6.8 ml min−1 with 60 s preconcentration time. For the range 0.1–2.0 μg l−1 of Pb a loading rate of 3.0 ml min−1 and 30 s preconcentration time were chosen, resulting in an adsorption efficiency of 42% and an enhancement factor of 21, respectively. A detection limit (3σ) of 2.2 ng l−1 of lead was obtained using a sample loading rate of 6.8 ml min−1 and 60 s preconcentration. The relative standard deviation of the entire procedure was 4.9% at the 0.01 μg l−1 Pb level with a loading rate of 6.8 ml min−1 and 60 s preconcentration, and 2.9% at the 0.5 μg l−1 Pb level with a 3.0 ml min−1 loading rate and 30 s preconcentration. Efficient washing of the matrix from the reactor was critical, requiring the use of the standard addition method for seawater samples. The analytical results obtained for seawater and river water standard reference materials were in good agreement with the certified values.  相似文献   

9.
Carrilho EN  Krug FJ  Zagatto EA 《Talanta》1995,42(12):2021-2026
Iron interference in the spectrophotometric catalytic determination of molybdenum based on the iodide-hydrogen peroxide reaction can be corrected by using sulphosalicylic acid as masking and color-forming reagent. The catalytic influence of iron ions is circumvented to the extent of about 90% and correction of any remaining iron ions is possible by monitoring the colored iron(III)-salicylate complex at 490 nm. In this way, iron is also determined. With the proposed system, molybdenum can be determined in plant and food digests within the 0–100 μg Mo 1−1 range in the presence of up to 25 mg Fe 1−1, at a sampling rate of about 50 determinations h−1. The relative standard deviation of 10 consecutive measurements was estimated as < 2%. Results for samples were comparable with those obtained by graphite furnace atomic absorption spectrometry. In addition, recoveries within the range 94–100% were calculated.  相似文献   

10.
Kubota T  Yamaguchi T  Okutani T 《Talanta》1998,46(6):1311-1319
A sample solution containing less than 0.5 μg of As was adjusted to pH 2. As in the solution was collected on activated carbon (AC) as molybdoarsenate. The AC was directly introduced as an AC suspension into a graphite furnace atomizer, and the concentration of As was determined by atomic absorption spectrometry (AAS). This method is relatively free from interference caused by coexisting ions. The calibration curve was linear up to 0.1 mg l−1, and limit of detection of As was 0.004 mg l−1. When 1000 ml of sample solution is preconcentrated to 5 ml (enrichment factor is 200-fold) 0.02 μg l−1 of As could be determined, and relative standard deviation was below 4.0% (by the deuterium background correction system). The method was applied to sea water and well water, and the sum of As(III) and As(V) was determined with satisfactory results.  相似文献   

11.
Zhihua Wang  Shujun Wang  Min Cai 《Talanta》2007,72(5):1723-1727
A graphite furnace atomic absorption spectrometry (GFAAS) method with optical temperature control for the determination of trace cadmium in paint samples is described. Optical temperature control was superior in many respects to current temperature control. The sensibility increased by 60%, the linear range widened by 60%, and the life of graphite tube showed a 200–300% increase because atomization temperature was lowered distinctly and atomization time was shortened. Use of lanthanum chloride as a matrix modifier was investigated. The linear range of calibration curve was 0–24 ng mL−1. The detection limit was 9.6 ng L−1. The characteristic mass was 3.0 pg. The method also resulted in excellent reproducibility (≤2.5% R.S.D.) at such low levels, and the recovery of added cadmium in paint samples was from 94.6% to 102%. This method is readily applicable to the determination of cadmium in paint samples.  相似文献   

12.
A system for molybdenum separation and enrichment aiming its determination in water and biological samples by graphite furnace atomic absorption spectrometry (GFAAS) is proposed. The procedure is based on the sorption of the molybdenum (VI) thiocyanate complex onto a mini-column packed with polyurethane foam (PUF). The elution is accomplished by a 3.0 mol l−1 nitric acid solution. Flow variables were optimized and an enrichment factor of 10 as well as a limit of detection (LOD) (3 s) of 0.08 μg l−1 in the sample solution were achieved. The coefficient of variation showed values of 3 and 2% for molybdenum solutions of 2.0 and 10.0 μg l−1, respectively. The accuracy of the method was confirmed by the good concordance between found and certified values in the analysis of certified reference materials (CRMs) (CASS-3 Nearshore Seawater, NIST 1547 Peach Leaves, NIST 1515 Apple Leaves and NIST 1572 Citrus Leaves). The procedure was also applied for the molybdenum determination in mineral waters as well as in produced water samples. The results obtained for the mineral water samples compared well with those obtained by ICP-MS. Concerning the produced water samples, in spite of their large salinity, recoveries of 90 to 120% at the 1 μg l−1 were observed.  相似文献   

13.
A flow injection procedure for the separation and pre-concentration of inorganic arsenic based on the complexation with ammonium diethyl dithiophosphate (DDTP) and sorption on a C-18 bonded silica gel minicolumn is proposed. During the sample injection by a time-based fashion, the As3+-DDTP complex is stripped from the solution and retained in the column. Arsenic(V) and other ions that do not form complexes are discarded. After reduction to the trivalent state by using potassium iodide plus ascorbic acid, total arsenic is determined by electrothermal atomic absorption spectrometry (ETAAS). Arsenic(V) concentration can be calculated by difference. After processing 6 ml sample volume, the As3+-DDTP complexes were eluted directly into the autosampler cup (120 μl). Ethanol was used for column rinsing. Influence of pH, reagent concentration, pre-concentration and elution time and column size were investigated. When 30 μl of eluate plus 10 μl of 0.1% (w/v) Pd(NO3)2 were dispensed into the graphite tube, analytical curve in the 0.3–3 μg As l−1 range was obtained (r=0.9991). The accuracy was checked for arsenic determination in a certified water, spiked tap water and synthetic mixtures of arsenite and arsenate. Good recoveries (97–108%) of spiked samples were found. Results are precise (RSD 7.5 and 6% for 0.5 and 2.5 μg l−1, n=10) and in agreement with the certified value of reference material at 95% confidence level.  相似文献   

14.
A fully automated procedure for the determination of ng l−1 amounts of lead has been developed using flow injection (FI) online column preconcentration coupled with electrothermal atomic absorption spectrometry (ETAAS). The proposed FI manifold and its operation make possible the introduction of the total eluate volume into the graphite atomizer, avoiding the necessity for optimization of subsampling the eluate. The interference of other heavy metal ions due to competition for active sites of the sorbent is overcome using a highly selective macrocycle immobilized on silica gel (Pb-02). Lead is adsorbed on a microcolumn (50 μl) packed with Pb-02, and after washing the column with dilute nitric acid, air is introduced to remove all solution from the column and connecting tubing. The sorbed analyte is then eluted quantitatively into the graphite tube atomizer, preheated to 100°C, with 36 μl of ETDA solution (0.035 mol l−1, pH 10.5), propelled by air in order to minimize dispersion. The collection efficiency was 77% and with a sample loading flow rate of 3 ml min−1 and a 60 s preconcentration time, the enhancement factor was 77 and the throughput was 17 samples per hour. The relative standard deviation (n = 10) at the 300 ng l−1 level was 2.7%, and the detection limit (3σ) was 0.4 ng l−1. No interference from heavy metals was observed, but ions of Ba2+, Sr2+ and K+ were found to interfere when the concentration ratios of interferent to lead exceeded values of 2000, 20 000 and 200 000, respectively. Quantitative recovery of lead was achieved from sodium, magnesium, aluminum, lanthanum and heavy metal salt solutions. The high selectivity and sensitivity, combined with extremely low blank values, make the proposed technique particularly attractive for the analysis of high-purity reagents, semiconductors and other high-purity materials. Results are presented for the determination of lead in some high-purity reagents.  相似文献   

15.
K. Dittrich 《Talanta》1977,24(12):725-733
The evaporation of the species Ga3+, In3+, PO3−4, AsO3−4, Ga3+/AsO3−4, Ga3+/PO3−4 and In3+/AsO3−4 in HCl and HNO3 medium was investigated by measurement of the non-specific absorption at 250 nm, in a graphite cuvette, with a continuum light source. The maximum of the non-specific absorption is given for the ashing and atomizing phases as a function of the ashing temperatures. Ashing temperatures for analytical determinations can be derived from the results. The mechanisms of evaporation of the substances were investigated by means of extinction-time curves. Absorption spectra of the matrices and of the pure acids used were measured between 190 and 330 nm in the graphite cuvette at different ashing and atomizing temperatures. The InCl- and GaCl-bands of the C-system and new bands of GaO- and InO-molecules were found. The PO-band at 246 nm was detected. The results are discussed and can be applied for thermal fractionation and for background correction by the two-line method in trace analysis by electrothermal AAS.  相似文献   

16.
高浓度基体中测定微量铁时,排除基体干扰,多是采用络合萃取、沉淀分离等方法。Inovc等人用二巯基顺丁二氰与铁以1:3络合,其络合物与四丁基铵阳离子(tba+)生成离子对,用MIBK萃取后进行测定,手续繁杂费时,灵敏度仅为0.039μg/ml 1%abs,范键同志在测金属铬中的铁时,采用不分离的方法,溶样后直接测定,方法简单,但指出磷酸在火焰中对铁有抑制作用。  相似文献   

17.
Preconcentration of trace impurities form large-sized samples of uranium metal and thorium oxide using a small column of Chelex-100 followed by their determination using graphite furnace atomic absorption spectrometry (GFAAS) is reported. A 0.5–10-g amount of the sample (uranium metal or thorium oxide) was dissolved, complexed with ammonium carbonate and subjected to the ion-exchange procedure. The retained analytes were eluted with 2–4 M nitric acid and brought to a small volume for a final dilution to 10-25 ml for their determination using GFAAS. The validity of the separation procedure and recoveries at μg kg−1 levels was checked by standard addition; the recoveries were> 95%.  相似文献   

18.
A sample solution was passed at 20 ml min−1 through a column (150×4 mm2) of Amberlite IRA-410Stron anion-exchange resin for 60 s. After washing, a solution of 0.1% sodium borohydride was passed through the column for 60 s at 5.1 ml min−1. Following a second wash, a solution of 8 mol l−1 hydrochloric acid was passed at 5.1 ml min−1 for 45 s. The hydrogen selenide was stripped from the eluent solution by the addition of an argon flow at 150 ml min−1 and the bulk phases were separated by a glass gas–liquid separator containing glass beads. The gas stream was dried by passing through a Nafion® dryer and fed, via a quartz capillary tube, into the dosing hole of a transversely heated graphite cuvette containing an integrated L’vov platform which had been pretreated with 120 μg of iridium as trapping agent. The furnace was held at a temperature of 250°C during this trapping stage and then stepped to 2000°C for atomization. The calibration was performed with aqueous standards solution of selenium (selenite, SeO32−) with quantification by peak area. A number of experimental parameters, including reagent flow rates and composition., nature of the gas–liquid separator, nature of the anion-exchange resin, column dimensions, argon flow rate and sample pH, were optimized. The effects of a number of possible interferents, both anionic and cationic were studies for a solution of 500 ng 1−1 of selenium. The most severe depressions were caused by iron (III) and mercury (II) for which concentrations of 20 and 10 mg  1−1 caused a 5% depression on the selenium signal. For the other cations (cadmium, cobalt, copper, lead,. magnesium, and nickel) concentrations of 50–70 mg 1−1 could be tolerated. Arsenate interfered at a concentration of 3 mg−1, whereas concentrations of chloride, bromide, iodide, perchlorate, and sulfate of 500–900 mg l−1 could be tolerated. A linear response was obtained between the detection limit of 4 ng 1−1, with a characteristic mass of 130 pg. The RSDs for solutions containing 100 and 200 ng 1−1 selenium were 2.3% and 1.5%, respectively.  相似文献   

19.
A flow injection (FI) on-line solvent extraction system for electrothermal atomic absorption spectrometry (ETAAS) was developed with nickel as a model trace element. The nickel pyrrolidine-dithiocarbamate chelate was extracted on line into isobutyl methyl ketone, which was delivered into the FI system by a peristaltic pump equipped with poly(tetrafluoroethylene) tubing. The organic phase was separated from the aqueous phase by a novel gravity phase separator with a small conical cavity, and stored in a collector tube, from which 50 μl organic concentrate was introduced into the graphite tube by an air flow. ETAAS determination of the analyte was performed in parallel with the extraction process. An enrichment factor of 25 was obtained in comparison with 50 μl direct introduction while achieving a detection limit of 4 ng l−1 (3σ), and a precision of 1.5% relative standard deviation for 1.0 μg l−1 nickel (n = 11). The proposed method was successfully applied to the determination of nickel in body fluids and other biological samples.  相似文献   

20.
The one-electron oxidation of Mitomycin C (MMC) as well as the formation of the corresponding peroxyl radicals were investigated by both steady-state and pulse radiolysis. The steady-state MMC-radiolysis by OH-attack followed at both absorption bands showed different yields: at 218 nm Gi (-MMC) = 3.0 and at 364 nm Gi (-MMC) = 3.9, indicating the formation of various not yet identified products, among which ammonia was determined, G(NH3) = 0.81. By means of pulse radiolysis it was established a total κ (OH + MMC) = (5.8 ± 0.2) × 109 dm3 mol−1 s−1. The transient absorption spectrum from the one-electron oxidized MMC showed absorption maxima at 295 nm (ε = 9950 dm3 mol−1 cmt-1), 410 nm (ε = 1450 dm3 mol−1 cm−1) and 505 nm ( ε = 5420 dm3 mol−1 cm−1). At 280–320 and 505 nm and above they exhibit in the first 150 μs a first order decay, κ1 = (0.85 ± 0.1) × 103 s−1, and followed upto ms time range, by a second order decay, 2κ = (1.3 ± 0.3) × 108 dm3 mol-1 s−1. Around 410 nm the kinetics are rather mixed and could not be resolved.

The steady-state MMC-radiolysis in the presence of oxygen featured a proportionality towards the absorbed dose for both MMC-absorption bands, resulting in a Gi (-MMC) = 1.5. Among several products ammonia-yield was determined G(NH3) = 0.52. The formation of MMC-peroxyl radicals was studied by pulse radiolysis, likewise in neutral aqueous solution, but saturated with a gas mixture of 80% N2O and 20% O2. The maxima of the observed transient spectrum are slightly shifted compared to that of the one-electron oxidized MMC-species, namely: 290 nm (ε = 10100 dm3 mol−1 cm−1), 410 nm (ε = 2900 dm3 mol−1 cm−1) and 520 nm (ε = 5500 dm3 mol−1 cm−1). The O2-addition to the MMC-one-electron oxidized transients was found to be at 290 to 410 nm gk(MMC·OH + O2) = 5 × 107 dm3 mol−1 s−1, around 480 nm κ = 1.6 × 108 dm3 mol−1 s−1 and at 510 nm and above, κ = 3 × 108 dm3 mol−1 s−1. The decay kinetics of the MMC-peroxyl radicals were also found to be different at the various absorption bands, but predominantly of first order; at 290–420 nm κ1 = 1.5 × 103 s−1 and at 500 nm and above, κ = 7.0 × 103 s−1.

The presented results are of interest for the radiation behaviour of MMC as well as for its application as an antitumor drug in the combined radiation-chemotherapy of patients.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号