We designed spiro-fused dinculear complexes using tetrakis(2-pyridyl)methane (py4C) for the development of ground high-spin molecules. We attempted to prepare a dinuclear copper(II) complex [{Cu(hfac)2}2(py4C)], where hfac stands for 1,1,1,5,5,5-hexafluoropentane-2,4-dionate, but we obtained [Cu(hfac)2(py4C)] and [Cu(hfac)(py4C) · Cu(hfac)3]. These molecular structures were determined by the X-ray crystal structure analysis. 相似文献
Silica sol-gel (SG) films with templated pores were deposited on glassy carbon (GC) electrodes by an electrochemically initiated process. Generation-4 poly(amidoamine), PAMAM, dendrimer was included in the tetraethoxysilane precursor to facilitate pore formation. The PAMAM adsorbs to the GC, which blocks SG formation at those sites on the electrode. The pore size was 10?±?5?nm. After removal of the PAMAM, cyclic voltammetry of Fe(CN)63? and Ru(NH3)63+ at pH?6.2 showed that the residual negative charge on the silica attenuated the current for the former and increased the current for the latter, presumably by electrostatic repulsion and ion-exchange preconcentration, respectively. This premise was supported by repeating the measurements at the isoelectric point. Methylation of the silanol sites was used to eliminate the charge of the SG. At the end-capped SG, the voltammetry of Fe(CN)63? and Ru(NH3)63+ yielded currents that were independent of pH over the range 2.1 to 7.2. Circumventing the need for the silanization by using (3-glycidyloxypropyl)trimethoxysilane as the sol-gel precursor failed because the oxygen plasma treatment to remove the PAMAM attacked the organically modified sol-gel backbone. The resulting modified electrode mitigated the influence of proteins on the voltammetry of test species and stabilized functionalize nanoparticle catalysts under hydrodynamic conditions. 相似文献
Silica sol-gel (SG) films with templated pores were deposited on glassy carbon (GC) electrodes by an electrochemically initiated process. Generation-4 poly(amidoamine), PAMAM, dendrimer was included in the tetraethoxysilane precursor to facilitate pore formation. The PAMAM adsorbs to the GC, which blocks SG formation at those sites on the electrode. The pore size was 10 ± 5 nm. After removal of the PAMAM, cyclic voltammetry of Fe(CN)63− and Ru(NH3)63+ at pH 6.2 showed that the residual negative charge on the silica attenuated the current for the former and increased the current for the latter, presumably by electrostatic repulsion and ion-exchange preconcentration, respectively. This premise was supported by repeating the measurements at the isoelectric point. Methylation of the silanol sites was used to eliminate the charge of the SG. At the end-capped SG, the voltammetry of Fe(CN)63− and Ru(NH3)63+ yielded currents that were independent of pH over the range 2.1 to 7.2. Circumventing the need for the silanization by using (3-glycidyloxypropyl)trimethoxysilane as the sol-gel precursor failed because the oxygen plasma treatment to remove the PAMAM attacked the organically modified sol-gel backbone. The resulting modified electrode mitigated the influence of proteins on the voltammetry of test species and stabilized functionalize nanoparticle catalysts under hydrodynamic conditions.
This paper presents a highly sensitive oxygen sensor that comprises an optical fiber coated at one end with platinum(II) meso-tetrakis(pentafluorophenyl)porphyrin (PtTFPP) and PtTFPP entrapped core-shell silica nanoparticles embedded in an n-octyltriethoxysilane (Octyl-triEOS)/tetraethylorthosilane (TEOS) composite xerogel. The sensitivity of the optical oxygen sensor is quantified in terms of the ratio I0/I100, where I0 and I100 represent the detected fluorescence intensities in pure nitrogen and pure oxygen environments, respectively. The experimental results show that the oxygen sensor has a sensitivity (I0/I100) of 166. The response time was 1.3 s when switching from pure nitrogen to pure oxygen, and 18.6 s when switching in the reverse direction. The experimental results show that compared to oxygen sensors based on PtTFPP, PtOEP, or Ru(dpp)32+ dyes, the proposed optical fiber oxygen sensor has the highest sensitivity. In addition to the increased surface area per unit mass of the sensing surface, the dye entrapped in the core of silica nanoparticles also increases the sensitivity because a substantial number of aerial oxygen molecules penetrate the porous silica shell. The dye entrapped core-shell nanoparticles is more prone to oxygen quenching. 相似文献
In this article, we present a new method for the obtaining of ZnCr2O4 and MgCr2O4 embedded in silica matrix. This method consists in the formation of Cr(III), Zn(II) and Cr(III), Mg(II) hydroxycarboxylate/carboxylate compounds, during the redox reaction between the nitrate ion and diol (1,3-propanediol), uniformly dispersed in the pores of hybrid gels. The thermal decomposition of these precursors leads to a mixture of corresponding metal oxides. The gels were synthesized starting from mixtures of Cr(NO3)3·9H2O, Zn(NO3)2·6H2O and Cr(NO3)3·9H2O, Mg(NO3)2·6H2O with tetraethyl orthosilicate and 1,3-propanediol for final compositions 50% ZnCr2O4/50% SiO2 and 50% MgCr2O4/50% SiO2. The obtained gels have been thermally treated at 140?°C, when the redox reaction nitrates-diol took place with formation of the precursors within the xerogels pores. The thermal decomposition of all precursors took place up to 300?°C, with formation of oxides mixtures (Cr2O3?+?x and ZnO) and (Cr2O3?+?x and MgO), respectively. At 400?°C, Cr2O3?+?x turn to Cr2O3 which reacts with ZnO forming ZnCr2O4/SiO2. Starting with 400?°C, Cr2O3 reacts with MgO to an intermediary phase MgCrO4, which decomposes with the formation of MgCr2O4/SiO2. The formation of the precursors inside the silica matrix and the evolution of the crystalline phases were studied by thermal analysis, FT-IR spectrometry, XRD, and TEM. 相似文献
We used a novel fabricated process including electron beam and isotropic oxygen plasma to generate signal line patterns of polymerized 2-hydroxyethyl methacrylate (HEMA) on patterned Si(1 0 0) surfaces. Isotropic oxygen plasma was introduced to enhance the resolutions of the line and dots patterns of the PHEMA brush are approached to 350 nm and 2 μm, respectively. We established the surface grafting polymerization kinetics of the PHEMA chains on silicon surface by to fit the thickness and number-average molecular weight (M(n)). The propagation rate (k(p)) and active grafting specie deactivation rate (k(d)) lies in the range of ~3.6 × 10(-2) s(-1) M(-1) and 4.8 × 10(-5) s(-1), respectively. The measured thicknesses by ellipsometer and analyzed M(n) of "free" PHEMA by gel permeation chromatography (GPC) are fitted well by the polymerization kinetic model. In addition, aspect-ratios (height/width) are used to define the shape of patterned PHEMA brushes. The high-aspect-ratio of the PHEMA brush line with width of 350 nm is 0.27. We use a graft polymerization/solvent immersion method for generating various patterns of polymer brushes to investigate the deformation of the PHEMA brush through aspect-ratios. 相似文献
Research on Chemical Intermediates - Cobalt ferrite is a promising material for many therapeutic applications, photo-catalysis, gas detectors, high-density data storage, etc. Optimization of... 相似文献
In this paper we present a study regarding the obtaining of iron oxides embedded in silica matrix, using a modified sol-gel
method. This method consists in the formation, inside the silica matrix, of some Fe(III)-carboxylate compounds, resulted in
the redox reaction between Fe(NO3)3 and diol.
We have synthesized four gels, starting from tetra-ethyl orthosilicate, Fe(NO3)3·9H2O and different diols: ethylene glycol, 1,2-propanediol, 1,3-propanediol and 1,4-butanediol, for a final composition 50% Fe2O3/50% SiO2. The obtained gels have been thermally treated at 130°C, when the redox reaction Fe(NO3)3-diol took place with formation of the precursors in the xerogels pores. The thermal decomposition of all four precursors
took place up to 300°C. 相似文献
Thick silica films were fabricated by electrophoretic sol-gel deposition of silica particles on a stainless steel sheet. Using sols prepared by the sol-gel method with poly(acrylic acid) (PAA) films of ca. 25 m in thickness were prepared with no cracks. The films were shown to be agglomerates of monodispersed silica particles with PAA. The size of the silica particles decreased with an increase in the added amount of PAA. The deposited weight was considerably larger for the films with PAA than that of the films without PAA. 相似文献
A multiple regression analysis of polarographic data has been used to determine the formulas and formation constants of complexes formed in alkaline solution by reaction of cadmium(II) ion and hydroxide ion with ethylenediamine (en), N-(2-hydroxyethyl)-ethylenediamine (hn) and N,N′-bis(2-hydroxyethyl)ethylenediamine (2hn). The complexes formed are designated by the general formula Cd(A)p(OH)p2?q and the formation constants are given as log βpq. The complexes found and their formation constants are: for en, 1 : 2 (10.3), 1 : 3 (12.3), and 1 : 2 : 1 (12.2); for hn, 1 : 2 (9.5), 1 : 2 : 1 (12.2), and 1 : 2 : 2 (12.6); and for 2hn, 1 : 2 (8.9), 1 : 1 : 2 (11.1), 1 : 2 : 1 (11.2), and 1 : 2 : 2 (12.6). It is concluded that in each case for which the hydroxide ion is reacted, a proton is removed from an alcoholic hydroxyl group which is coordinated to form a five-membered chelate ring linking a nitrogen atom and oxygen atom to the cadmium(II) ion. 相似文献
The surface properties of poly(methyl methacrylate) (PMMA) impregnated fumed silicas, in a large range of impregnation ratios, were examined using inverse gas chromatography at infinite dilution. It was observed that the dispersive component gamma(s)d does not decrease monotonously with the impregnation ratio. Two critical coverage ratios were evidenced corresponding at first to the shielding of the most energetic sites and then to the achievement of total coverage of the silica surface. The influence of the coverage ratio on the glassy temperature (tg) of the adsorbed PMMA was also studied, which was evidenced down to a very low coverage ratio (1 monomer unit/nm2). 相似文献
Vanadium(IV) oxide nanolayers on silica surface were prepared for the first time. Samples characterized by different degrees of surface coverage by vanadium(IV)-oxygen groups were studied. Samples containing only vanadium(IV) ions and both vanadium(IV) and vanadium(V) ions were obtained. The size effect on the phase transition parameters was determined by studying magnetic properties of vanadium(IV) oxide nanolayers. The phase transition temperature ranges from 140 to 220 K, depending on surface concentration of vanadium(IV) ions and their environment. 相似文献
The effect of (2-hydroxyethyl)trimethylammonium (2-HETMA) cation on the equilibrium of silicate oligomers in aqueous alkaline silicate solutions was investigated using (29)Si NMR spectra. The results indicate role of structural directing of 2-HETMA in which it particularly directs the silicate species to the Q(4)(1)Q(4)(3)Q(4)(4) silicate anion. Results reveal that composition of the alcohols in solution affect the distribution of anionic species. The effect of methanol concentration is also discussed. 相似文献
The TiO2 gel doped with UO22 and Eu3 has been prepared by a sol-gel method. The quenching of the UO22 emission by Eu3 and the energy transfer from the excited state of UO22 to the ground state of Eu3 have been investigated. The energy transfer has been studied by the measurement of luminescence lifetime τ, calculations of energy transfer efficiency ηET and energy transfer rate WET. The experimental results indicated that the quenching is combined static and dynamic mechanism, but the static mechanism is dominant. 相似文献
The attapulgite/iron oxide magnetic nanocomposites were prepared by coprecipitation method and characterized by scanning electron microscopy, X-ray diffraction, vibrating sample magnetometer and Fourier transform infrared sorption spectroscopy. The results of characterization showed that iron oxides were successfully deposited on the surfaces of attapulgite. The prepared magnetic nanocomposites were applied to remove radionuclide U(VI) ions from aqueous solutions by using batch technique and magnetic separation method. The results showed that the sorption of U(VI) on attapulgite/iron oxide magnetic composites was strongly dependent on ionic strength and pH at low pH values, and was independent of ionic strength at high pH values. The interaction of U(VI) with the magnetic nanocomposites was mainly dominated by outer-sphere surface complexation or ion exchange at low pH values, and was controlled by inner-sphere surface complexation or multinuclear surface complexation at high pH values. With increasing temperature, the sorption of U(VI) on attapulgite/iron oxide magnetic composites increased and the thermodynamic parameters calculated from the temperature dependent sorption isotherms suggested that the sorption of U(VI) on the magnetic nanocomposites was a spontaneous and endothermic process. The high sorption capacity and easy magnetic separation of the attapulgite/iron oxide magnetic composites make the material as suitable sorbent in nuclear waste management. 相似文献
Poly(imide siloxane)(PIS)/titania(TiO2) hybrid nanocomposites with organic-inorganic covalent bonding have been successfully synthesized by sol-gel processes. The PIS copolymer synthesized in this study was characterized by the observed coexisting two segments: the polyimide (PI) segment and polydimethyldiphenylsiloxane segment, and the latter were specially featured with the introduction of a diphenyl group for improved homogeneity.The obtained TiO2 networks in PIS matrix were well dispersed and their average diameter was less than 50 nm. Meanwhile, the PIS/TiO2 hybrid nanocomposite films exhibited good optical transparency at 20 wt% of TiO2 content. The thermal stability, tensile strength and elongation of the nanocomposites decreased with increasing TiO2 content. The glass transition temperature (Tg) and Young’s modulus increased with increasing TiO2 content. The chemical structure and morphologies of PIS/TiO2 hybrid nanocomposites was characterized by Fourier transform infrared spectroscope (FT-IR), X-ray photoelectron spectroscopy (XPS), and transmission electron microscope (TEM). The Tg and thermal stability were measured by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA), respectively. The mechanical properties were examined by dynamic mechanical analysis (DMA) under controlled force mode. 相似文献
The antifouling properties of poly(2-hydroxyethyl methacrylate- co-methyl methacrylate) hydrogels were improved by the surface grafting of a brush of poly(oligoethylene glycol methyl ether acrylate) [poly(OEGA)]. The atom-transfer radical polymerization (ATRP) of OEGA (degree of polymerization = 8) was initiated from the preactivated surface of the hydrogel under mild conditions, thus in water at 25 degrees C. The catalytic system was optimized on the basis of two ligands [1,1,4,7,10,10-hexamethyl-triethylenetetramine (HMTETA) or tris[2-(dimethylamino)ethyl]amine (Me6TREN)] and two copper salts (CuIBr or CuICl). Faster polymerization was observed for the Me 6TREN/CuIBr combination. The chemical composition and morphology of the coated surface were analyzed by X-ray photoelectron spectroscopy, attenuated total reflectance Fourier transform infrared spectroscopy, contact angle measurements by the water droplet and captive bubble methods, scanning electron microscopy, and environmental scanning electron microscopy. The hydrophilicity of the surface increased with the molar mass of the grafted poly(OEGA) chains, and the surface modifications were reported in parallel. The antifouling properties of the coatings were tested by in vitro protein adsorption and cell adhesion tests, with green fluorescent protein, beta-lactamase, and lens epithelial cells, as model proteins and model cells, respectively. The grafted poly(OEGA) brush decreased the nonspecific protein adsorption and imparted high cell repellency to the hydrogel surface. 相似文献
Poly(ethyl methacrylate-co-hydroxyethyl acrylate) 70/30 %wt/silica, P(EMA-co-HEA)/SiO2, nanocomposites, with silica contents ranging from 0 to 30 %wt, were synthesized and studied as promising candidate materials for the synthetic matrix of scaffolds for bone substitutes or dentin regeneration. The physico-chemical properties of the hybrids were studied by calorimetry and by contact angle measurements on the surfaces. The dynamic-mechanical and compression properties were analysed. Intermediate silica contents in the range from 10 to 20 %wt of silica rendered co-continuous interpenetrated structures, in which silica produced a reinforcing effect in the polymeric matrix and at the same time conferred bioactivity to the surfaces by improving surface wettability, making these hybrids appropriate for the proposed application. On the contrary, silica percentages below 10 %wt formed disconnected inorganic aggregates at the nanoscale dispersed in the copolymer matrix, which did not modify significantly the copolymer properties. Silica contents above 20 %wt formed denser inorganic networks with few terminal silanol groups available at the surfaces, much more rigid and hardly manageable samples. 相似文献