首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The unusual linear trinuclear complex [Mo3O4(TPP)3]+ is formed in solution upon the reaction of [MoO(TPP)-(OClO3)] with [[MoO(TPP)]2O], and an equilibrium between [Mo3O4(TPP)3]+ and its constituent species is rapidly established. Spectrophotometric experiments suggest that [Mo3O4(TPP)3]+ is the predominant species found in solutions resulting from the mixture of [MoO(TPP)(OClO3)] and [[MoO(TPP)]2O], and its formation is strongly favored (log K = 5.5 +/- 0.5 M-1). No evidence of higher oligomers has been observed. A mechanism for the formation of [Mo3O4(TPP)3]+ by the controlled hydrolysis of [MoO(TPP)(OClO3)] is proposed.  相似文献   

2.
The reaction of [M(CN)(6)](3-) (M = Cr(3+), Mn(3+), Fe(3+), Co(3+)) and [M(CN)(8)](4-/3-) (M = Mo(4+/5+), W(4+/5+)) with the trinuclear copper(II) complex of 1,3,5-triazine-2,4,6-triyltris[3-(1,3,5,8,12-pentaazacyclotetradecane)] ([Cu(3)(L)](6+)) leads to partially encapsulated cyanometalates. With hexacyanometalate(III) complexes, [Cu(3)(L)](6+) forms the isostructural host-guest complexes [[[Cu(3)(L)(OH(2))(2)][M(CN)(6)](2)][M(CN)(6)]][M(CN)(6)]30 H(2)O with one bridging, two partially encapsulated, and one isolated [M(CN)(6)](3-) unit. The octacyanometalates of Mo(4+/5+) and W(4+/5+) are encapsulated by two tris-macrocyclic host units. Due to the stability of the +IV oxidation state of Mo and W, only assemblies with [M(CN)(8)](4-) were obtained. The Mo(4+) and W(4+) complexes were crystallized in two different structural forms: [[Cu(3)(L)(OH(2))](2)[Mo(CN)(8)]](NO(3))(8)15 H(2)O with a structural motif that involves isolated spherical [[Cu(3)(L)(OH(2))](2)[M(CN)(8)]](8+) ions and a "string-of-pearls" type of structure [[[Cu(3)(L)](2)[M(CN)(8)]][M(CN)(8)]](NO(3))(4) 20 H(2)O, with [M(CN)(8)](4-) ions that bridge the encapsulated octacyanometalates in a two-dimensional network. The magnetic exchange coupling between the various paramagnetic centers is characterized by temperature-dependent magnetic susceptibility and field-dependent magnetization data. Exchange between the CuCu pairs in the [Cu(3)(L)](6+) "ligand" is weakly antiferromagnetic. Ferromagnetic interactions are observed in the cyanometalate assemblies with Cr(3+), exchange coupling of Mn(3+) and Fe(3+) is very small, and the octacoordinate Mo(4+) and W(4+) systems have a closed-shell ground state.  相似文献   

3.
Two novel heterotetranuclear complexes [V(2)O(2)(μ-MeO)(2)(μ-WO(4))(2)(4,4'-(t)Bubpy)(2)] (1) and [V(2)O(2)(μ-MeO)(2)(μ-MoO(4))(2)(4,4'-(t)Bubpy)(2)] (2) were synthesized, and the solid state structures of these complexes were revealed by single crystal X-ray crystallography. The heterotetranuclear complexes 1 and 2 are centrosymmetric building blocks, considered as consisting of two [VO(4,4'-(t)Bubpy)](3+) units bridged by μ-MO(4)(2-) (M = W or Mo) anions connected with methoxy groups. Furthermore, catalytic activities of 1 and 2 in the alcohol oxidation with hydrogen peroxide as terminal oxidants in water as solvent were investigated.  相似文献   

4.
Here we investigate the synthesis of high-nuclearity heterometallic titanium oxo-alkoxy cages using the reactions of metal chlorides with [Ti(OEt)(4)] or the pre-formed homometallic titanium-oxo-alkoxy cage [Ti(7)O(4)(OEt)(20)] (A). The octanuclear Ti(7)Co(II) cage [Ti(7)CoO(5)(OEt)(19)Cl] (1) (whose low-yielding synthesis we reported earlier) can be made in better yield, reproducibly by the reaction of a mixture of heptanuclear [Ti(7)O(4)(OEt)(20)] (A) and [KOEt] with [Co(II)Cl(2)] in toluene. A alone reacts with [Co(II)Cl(2)] and [Fe(II)Cl(2)] to form [Ti(7)Co(II)O(5)(OEt)(18)Cl(2)] (2) and [Ti(7)Fe(II)O(5)(OEt)(18)Cl(2)] (3), respectively. Like 1, compounds 2 and 3 retain the original Ti(7) fragment of A and the II-oxidation state of the transition metal ions (Tm). In contrast, from the reaction of [Ti(OEt)(4)] with [Cr(II)Cl(2)] it is possible to isolate [Ti(3)Cr(V)O(OEt)(14)Cl] (4) in low yield, containing a Ti(3)Cr(V) core in which oxidation of Cr from the II to V oxidation state has occurred. Reaction of [Mo(V)Cl(5)] with [Ti(OEt)](4) in [EtOH] gives the Ti(8)Mo(V)(4) cage [{Ti(4)Mo(2)O(8)(OEt)(10)}(2)] (5). The single-crystal X-ray structures of the new cages 2, 3, 4, and 5 are reported. The results show that the size of the heterometallic cage formed can be influenced by the nuclearity of the precursor. In the case of 5, the presence of homometallic Mo-Mo bonding also appears to be a significant factor in the final structure.  相似文献   

5.
A reproducible synthesis of a competent epoxidation catalyst, [Ru(VI)(TPP)(O)2)] (TPP = tetraphenylporphyrin dianion), starting from [Ru(II)(TPP)(CO)L] (L = none or CH3OH), is described. The molecular structure of the complex was determined by using ab initio X-ray powder diffraction (XRPD) methods, and its solution behavior was in detail investigated by NMR techniques such as PGSE (pulsed field gradient spin-echo) measurements. [Ru(IV)(TPP)(OH)]2O, a reported byproduct in the synthesis of [Ru(VI)(TPP)(O)2], was synthesized in a pure form by oxidation of [Ru(II)(TPP)(CO)L] or by a coproportionation reaction of [Ru(VI)(TPP)(O)2] and [Ru(II)(TPP)(CO)L], and its molecular structure was then determined by XRPD analysis. [Ru(VI)(TPP)(O)2] can be reduced by dimethyl sulfoxide or by carbon monoxide to yield [Ru(II)(TPP)(S-DMSO)2] or [Ru(II)(TPP)(CO)(H2O)], respectively. These two species were characterized by conventional single-crystal X-ray diffraction analysis.  相似文献   

6.
The reaction of the group 9 bis(hydrosulfido) complexes [Cp*M(SH)2(PMe3)] (M=Rh, Ir; Cp*=eta(5)-C 5Me5) with the group 6 nitrosyl complexes [Cp*M'Cl2(NO)] (M'=Mo, W) in the presence of NEt3 affords a series of bis(sulfido)-bridged early-late heterobimetallic (ELHB) complexes [Cp*M(PMe3)(mu-S)2M'(NO)Cp*] (2a, M=Rh, M'=Mo; 2b, M=Rh, M'=W; 3a, M=Ir, M'=Mo; 3b, M=Ir, M'=W). Similar reactions of the group 10 bis(hydrosulfido) complexes [M(SH)2(dppe)] (M=Pd, Pt; dppe=Ph 2P(CH2) 2PPh2), [Pt(SH)2(dppp)] (dppp=Ph2P(CH2) 3PPh2), and [M(SH)2(dpmb)] (dpmb=o-C6H4(CH2PPh2)2) give the group 10-group 6 ELHB complexes [(dppe)M(mu-S)2M'(NO)Cp*] (M=Pd, Pt; M'=Mo, W), [(dppp)Pt(mu-S)2M'(NO)Cp*] (6a, M'=Mo; 6b, M'=W), and [(dpmb)M(mu-S)2M'(NO)Cp*] (M=Pd, Pt; M'=Mo, W), respectively. Cyclic voltammetric measurements reveal that these ELHB complexes undergo reversible one-electron oxidation at the group 6 metal center, which is consistent with isolation of the single-electron oxidation products [Cp*M(PMe3)(mu-S)2M'(NO)Cp*][PF6] (M=Rh, Ir; M'=Mo, W). Upon treatment of 2b and 3b with ROTf (R=Me, Et; OTf=OSO 2CF 3), the O atom of the terminal nitrosyl ligand is readily alkylated to form the alkoxyimido complexes such as [Cp*Rh(PMe3)(mu-S)2W(NOMe)Cp*][OTf]. In contrast, methylation of the Rh-, Ir-, and Pt-Mo complexes 2a, 3a, and 6a results in S-methylation, giving the methanethiolato complexes [Cp*M(PMe3)(mu-SMe)(mu-S)Mo(NO)Cp*][BPh 4] (M=Rh, Ir) and [(dppp)Pt(mu-SMe)(mu-S)Mo(NO)Cp*][OTf], respectively. The Pt-W complex 6b undergoes either S- or O-methylation to form a mixture of [(dppp)Pt(mu-SMe)(mu-S)W(NO)Cp*][OTf] and [(dppp)Pt(mu-S) 2W(NOMe)Cp*][OTf]. These observations indicate that O-alkylation and one-electron oxidation of the dinuclear nitrosyl complexes are facilitated by a common effect, i.e., donation of electrons from the group 9 or 10 metal center, where the group 9 metals behave as the more effective electron donor.  相似文献   

7.
A series of molybdenum and tungsten organometallic oxides containing [Ru(arene)]2+ units (arene =p-cymene, C6Me6) was obtained by condensation of [[Ru(arene)Cl2]2] with oxomolybdates and oxotungstates in aqueous or nonaqueous solvents. The crystal structures of [[Ru(eta6-C6Me6]]4W4O16], [[Ru(eta6-p-MeC6H4iPr]]4W2O10], [[[Ru-(eta6-p-MeC6H4iPr)]2(mu-OH)3]2][[Ru(eta6-p-MeC6H4iPr)]2W8O28(OH)2[Ru(eta6-p-MeC6H4iPr)(H2O)]2], and [[Ru(eta6-C6Me6)]2M5O18[Ru(eta6-C6Me6)(H2O)]] (M = Mo, W) have been determined. While the windmill-type clusters [[Ru(eta6-arene)]4(MO3)4(mu3-O)4] (M = Mo, W; arene =p-MeC6H4iPr, C6Me6), the face-sharing double cubane-type cluster [[Ru(eta6-p-MeC6H4iPr)]4(WO2)2(mu3-O)4(mu4-O)2], and the dimeric cluster [[Ru(eta6-p-MeC6H4iPr)(WO3)3(mu3-O)3(mu3-OH)Ru(eta6-pMeC6H4iPr)(H2O)]2(mu-WO2)2]2- are based on cubane-like units, [(Ru(eta6-C6Me6)]2M5O18[Ru(eta6-C6Me6)(H2O)]] (M = Mo, W) are more properly described as lacunary Lindqvist-type polyoxoanions supporting three ruthenium centers. Precubane clusters [[Ru(eta6-arene)](MO3)2(mu-O)3(mu3-O)]6- are possible intermediates in the formation of these clusters. The cluster structures are retained in solution, except for [[Ru(eta6-p-MeC6H4iPr)]4Mo4O16], which isomerizes to the triple-cubane form.  相似文献   

8.
Two previously reported compounds [Mo(2)](CH(3)O)(2)M(CH(3)O)(2)[Mo(2)] (Cotton, F. A.; Liu, C. Y.; Murillo, C. A.; Wang, X. Inorg. Chem. 2003, 42, 4619), in which [Mo(2)] is an abbreviation for the quadruply bonded Mo(2)(4+) unit embraced by three (p-anisyl)NC(H)N(p-anisyl) anions and M = Zn (1) or Co (2), have been chemically oxidized. One-electron oxidation products [Mo(2)](CH(3)O)(2)M(CH(3)O)(2)[Mo(2)](PF(6)) (3, M = Zn; 4, M = Co) and the two-electron oxidation product [Mo(2)](CH(3)O)(2)Zn(CH(3)O)(OH)[Mo(2)](PF(6))(2) (5) have been isolated and structurally characterized. As expected, oxidations occur at the dimolybdenum units. The mono-charged cations in 3 and 4 have asymmetric molecular structures with two distinct [Mo(2)] units. In each case, one of the [Mo(2)] units has a lengthened Mo-Mo bond distance of 2.151[1] A, as expected for one-electron oxidation, whereas the other remains unchanged at 2.115[1] A. These correspond to bond orders of 3.5 (sigma(2)pi(4)delta(1)) and 4.0 (sigma(2)pi(4)delta(2)), respectively. The crystallographic results thus show unambiguously that in the crystalline state, the mixed-valence compounds (3 and 4) are electronically localized and the unpaired electron is trapped on one [Mo(2)] unit. These results are supported by the EPR spectra. The doubly oxidized compound 5 has two equivalent [Mo(2)] units, both with a Mo-Mo bond distance of 2.149[1] A. EPR and magnetic susceptibility measurements for 5 indicate that there is no significant ferromagnetic or antiferromagnetic spin coupling and the species is valence-trapped.  相似文献   

9.
The compounds M(2)(mhp)(4), where M = Mo or W and mhp is the anion formed from deprotonation of 2-hydroxy-6-methylpyridine, are shown to react with carboxylic acids RCOOH to give an equilibrium mixture of products M(2)(O(2)CR)(n)(mhp)(4-n) where R = 2-thienyl and phenyl. The equilibrium can be moved in favor of M(2)(O(2)CR)(4) by the addition of excess acid or by the favorable crystallization of these products. The latter provides a facile synthesis of the W(2)(O(2)CR)(4) compound where R = 9-anthracene. Reactions involving 2,4,6-triisopropyl benzoic acid, TiPBH, yield M(2)(TiPB)(2)(mhp)(2) compounds as thermodynamic products. Reactions involving Me(3)OBF(4) (1 and 2 equiv.) yield the complexes Mo(2)(mhp)(3)(CH(3)CN)(2)BF(4) and Mo(2)(mhp)(2)(CH(3)CN)(4)(BF(4))(2), respectively. The latter compound has been structurally characterized and shown to have mirror symmetry with two cis mhp ligands: MoMo = 2.1242(5) A, Mo-O = 2.035(2) A, Mo-N(mhp) = 2.161(2) A, and Mo-N(CH(3)CN) = 2.160(3) and 2.170(3) A. Reactions involving Mo(2)(mhp)(3)(CH(3)CN)(2)(2+) and Mo(2)(mhp)(2)(CH(3)CN)(4)(2+) with (n)Bu(4)NO(2)CMe (1 and 2 equiv.) yield the complexes Mo(2)(mhp)(3)(O(2)CMe) and Mo(2)(mhp)(2)(O(2)CMe)(2) which are shown to be kinetically labile to ligand scrambling. Reactions between Mo(2)(mhp)(3)(CH(3)CN)(2)(+)BF(4)(-) (2 equiv.) and [(n)Bu(4)N(+)](2)[O(2)C-X-CO(2)](2-) yielded dimers of dimers [Mo(2)(mhp)(3)](2)(micro-O(2)C-X-CO(2)] where X = nothing, 2,5- or 3,4-thienyl and 1,4-C(6)H(4). Reactions between Mo(2)(mhp)(2)(CH(3)CN)(4)(2+)(BF(4)(-))(2) and tetra-n-butylammonium oxalate and terephthalate yield compounds [Mo(mhp)(2)bridge](n) which by MALDI-TOF MS are proposed to be a mixture of molecular squares (n = 4) and triangles (n = 3) along with minor products of [Mo(2)(mhp)(3)](2)(bridge) and Mo(2)(mhp)(4) that arise from ligand scrambling.  相似文献   

10.
Two gas-phase catalytic cycles for the two-electron oxidation of primary and secondary alcohols were detected by multistage mass spectrometry experiments. A binuclear dimolybdate center [Mo(2)O(6)(OCHR(2))](-) acts as the catalyst in both these cycles. The first cycle proceeds via three steps: (1) reaction of [Mo(2)O(6)(OH)](-) with alcohol R(2)HCOH and elimination of water to form [Mo(2)O(6)(OCHR(2))](-); (2) oxidation of the alkoxo ligand and its elimination as aldehyde or ketone in the rate-determining step; and (3) regeneration of the catalyst via oxidation by nitromethane. Step 2 does not occur at room temperature and requires the use of collisional activation to proceed. The second cycle is similar but differs in the order of reaction with alcohol and nitromethane. The nature of each of these reactions was probed by kinetic measurements and by variation of the substrate alcohols (structure and isotope labeling). The role of the binuclear molybdenum center was assessed by examination of the relative reactivities of the mononuclear [MO(3)(OH)](-) and binuclear [M(2)O(6)(OH)](-) ions (M = Cr, Mo, W). The molybdenum and tungsten binuclear centers [M(2)O(6)(OH)](-) (M = Mo, W) were reactive toward alcohol but the chromium center [Cr(2)O(6)(OH)](-) was not. This is consistent with the expected order of basicity of the hydroxo ligand in these species. The chromium and molybdenum centers [M(2)O(6)(OCHR(2))](-) (M = Cr, Mo) oxidized the alkoxo ligand to aldehyde, while the tungsten center [W(2)O(6)(OCHR(2))](-) did not, instead preferring the non-redox elimination of alkene. This is consistent with the expected order of oxidizing power of the anions. Each of the mononuclear anions [MO(3)(OH)](-) (M = Cr, Mo, W) was inert to reaction with methanol, highlighting the importance of the second MoO(3) unit in these catalytic cycles. Only the dimolybdate center has the mix of properties that allow it to participate in each of the three steps of the two catalytic cycles. The three reactions of these cycles are equivalent to the three essential steps proposed to occur in the industrial oxidation of gaseous methanol to formaldehyde at 300-400 degrees C over solid-state catalysts based upon molybdenum(VI)-trioxide. The new gas-phase catalytic data is compared with those for the heterogeneous process.  相似文献   

11.
The Mo(3)SnS(4)(6+) single cube is obtained by direct addition of Sn(2+) to [Mo(3)S(4)(H(2)O)(9)](4+). UV-vis spectra of the product (0.13 mM) in 2.00 M HClO(4), Hpts, and HCl indicate a marked affinity of the Sn for Cl(-), with formation of the more strongly yellow [Mo(3)(SnCl(3))S(4)(H(2)O)(9)](3+) complex complete in as little as 0.050 M Cl(-). The X-ray crystal structure of (Me(2)NH(2))(6)[Mo(3)(SnCl(3))S(4)(NCS)(9)].0.5H(2)O has been determined and gives Mo-Mo (mean 2.730 ?) and Mo-Sn (mean 3.732 ?) distances, with a difference close to 1 ?. The red-purple double cube cation [Mo(6)SnS(8)(H(2)O)(18)](8+) is obtained by reacting Sn metal with [Mo(3)S(4)(H(2)O)(9)](4+). The double cube is also obtained in approximately 50% yield by BH(4)(-) reduction of a 1:1 mixture of [Mo(3)SnS(4)(H(2)O)(10)](6+) and [Mo(3)S(4)(H(2)O)(9)](4+). Conversely two-electron oxidation of [Mo(6)SnS(8)(H(2)O)(18)](8+) with [Co(dipic)(2)](-) or [Fe(H(2)O(6)](3+) gives the single cube [Mo(3)SnS(4)(H(2)O)(12)](6+) and [Mo(3)S(4)(H(2)O)(9)](4+) (up to 70% yield), followed by further two-electron oxidation to [Mo(3)S(4)(H(2)O)(9)](4+) and Sn(IV). The kinetics of the first stages have been studied using the stopped-flow method and give rate laws first order in [Mo(6)SnS(8)(H(2)O)(18)](8+) and the Co(III) or Fe(III) oxidant. The oxidation with [Co(dipic)(2)](-) has no [H(+)] dependence, [H(+)] = 0.50-2.00 M. With Fe(III) as oxidant, reaction steps involving [Fe(H(2)O)(6)](3+) and [Fe(H(2)O)(5)OH](2+) are implicated. At 25 degrees C and I = 2.00 M (Li(pts)) k(Co) is 14.9 M(-)(1) s(-)(1) and k(a) for the reaction of [Fe(H(2)O)(6)](3+) is 0.68 M(-)(1) s(-)(1) (both outer-sphere reactions). Reaction of Cu(2+) with the double but not the single cube is observed, yielding [Mo(3)CuS(4)(H(2)O)(10)](5+). A redox-controlled mechanism involving intermediate formation of Cu(+) and [Mo(3)S(4)(H(2)O)(9)](4+) accounts for the changes observed.  相似文献   

12.
The compounds [Cp(2)M(S(2)C(2)(H)R)] (M = Mo or W; R = phenyl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl or quinoxalin-2-yl) and [Cp(2)Mo(S(2)C(2)(Me)(pyridin-2-yl)] have been prepared by a facile and general route for the synthesis of dithiolene complexes, viz. the reaction of [Cp(2)MCl(2)] (M = Mo or W) with the dithiolene pro-ligand generated by reacting the corresponding 4-(R)-1,3-dithiol-2-one with CsOH. These Mo compounds were reported previously (Hsu et al., Inorg. Chem. 1996, 35, 4743); however, the preparative method employed herein is more versatile and generates the compounds in good yield and all of the W compounds are new. Electrochemical investigations have shown that each compound undergoes a diffusion controlled one-electron oxidation (OX(I)) and a one-electron reduction (RED(I)) process; each redox change occurs at a more positive potential for a Mo compound than for its W counterpart. The mono-cations generated by chemical or electrochemical oxidation are stable and the structures of both components of the [Cp(2)Mo(S(2)C(2)(H)R)](+)/[Cp(2)Mo(S(2)C(2)(H)R)] (R = Ph or pyridin-3-yl) redox couples have been determined by X-ray crystallography. For each redox related pair, the changes in the Mo-S, S-C and C-C bond lengths of the {MoSCCS} moiety are generally consistent with OX(I) involving the loss of an electron from a π-orbital that is Mo-S and C-S antibonding and C-C bonding in character. These results have been interpreted successfully within the framework provided by DFT calculations accomplished for [Cp(2)M(S(2)C(2)(H)Ph)](n) (M = Mo or W; n = +1, 0 or -1). The HOMO of the neutral compounds is derived mainly from the dithiolene π(3) orbital (65%); therefore, OX(I) is essentially a dithiolene-based process. The similarity of the potentials for OX(I) (ca. 30 mV) for analogous Mo and W compounds is consistent with this interpretation and the EPR spectra of each of the Mo cations show that the unpaired electron is coupled to the dithiolene proton but relatively weakly to (95,97)Mo. The DFT calculations indicate that the unpaired electron is more localised on the metal in the mono-anions than in the mono-cations. In agreement with this, the EPR spectrum of each of the Mo-containing mono-anions manifests a larger (95,97)Mo coupling (A(iso)) than observed for the corresponding mono-cation and RED(I) for a W compound is significantly (ca. 300 mV) more negative than that of its Mo counterpart. [Cp(2)W(S(2)C(2)(H)(quinoxalin-2-yl))] is anomalous; RED(I) occurs at a potential ca. 230 mV more positive than expected from that of its Mo counterpart and the EPR spectrum of the mono-anion is typical of an organic radical. DFT calculations indicate that these properties arise because the electron is added to a quinoxalin-2-yl π-orbital.  相似文献   

13.
Treatment of [M(II)(en)(3)][OTs](2) or methanolic ethylenediamine solutions containing transition metal p-toluenesulfonates (M(II) = Mn, Co) with aqueous K(4)M(IV)(CN)(8).2H(2)O or Cs(3)M(V)(CN)(8) (M(IV) = Mo, W; M(V) = Mo) affords crystalline clusters of [M(II)(en)(3)][cis-M(II)(en)(2)(OH(2))(mu-NC)M(IV)(CN)(7)].2H(2)O (M(IV) = Mo; M(II) = Mn, 1; Ni, 5; M(IV) = W; M(II) = Mn, 2; Ni, 6) and [cis-M(II)(en)(2)(OH(2))](2)[(mu-NC)(2)M(IV)(CN)(6)].4H(2)O (M(IV) = Mo; M(II) = Co, 3; Ni, 7; M(IV) = W; M(II) = Co, 4) stoichiometry. Each cluster contains cis-M(II)(en)(2)(OH(2))(mu-NC)(2+) units that likely result from dissociative loss of en from [M(II)(en)(3)](2+), affording cis-M(II)(en)(2)(OH(2))(2)(2+) intermediates that are trapped by M(IV)(CN)(8)(4-).  相似文献   

14.
New cyano-bridged coordination polymers [Nd(phen)(2)(DMF)(2)(H(2)O)Mo(CN)(8)]·2H(2)O (1) and [Nd(phen)(DMF)(5)M(CN)(8)]·xH(2)O [M = Mo (2), W (3); phen = 1,10-phenanthroline] have one-dimensional structures with variable number of phenanthroline ligands. Compounds exhibit photoluminescence in the near-infrared region and ferromagnetic Nd(3+)-M(5+) interactions.  相似文献   

15.
The redox-active fac-[Mo(V)(mp)(3)](-) (mp: o-mercaptophenolato) bearing asymmetric O- and S-cation binding sites can bind with several kinds of metal ions such as Na(+), Mn(II), Fe(II), Co(II), Ni(II), and Cu(I). The fac-[Mo(V)(mp)(3)](-) metalloligand coordinates to Na(+) to form the contact ion pair {Na(+)(THF)(3)[fac-Mo(V)(mp)(3)]} (1), while a separated ion pair, n-Bu(4)N[fac-Mo(V)(mp)(3)] (2), is obtained by exchanging Na(+) with n-Bu(4)N(+). In the presence of asymmetric binding-sites, the metalloligand reacts with Mn(II)Cl(2)·4H(2)O, Fe(II)Cl(2)·4H(2)O, Co(II)Cl(2)·6H(2)O, and Ni(II)Cl(2)·6H(2)O to afford UV-vis-NIR spectra, indicating binding of these guest metal cations. Especially, for the cases of the Mn(II) and Co(II) products, trinuclear complexes, {M(H(2)O)(MeOH)[fac-Mo(V)(mp)(3)](2)}·1.5CH(2)Cl(2) (3·1.5CH(2)Cl(2) (M = Mn(II)), 4·1.5CH(2)Cl(2) (M = Co(II))), are successfully isolated and structurally characterized where the M are selectively bound to the hard O-binding sites of the fac-[Mo(V)(mp)(3)](-). On the other hand, a coordination polymer, {Cu(I)(CH(3)CN)[mer-Mo(V)(mp)(3)]}(n) (5), is obtained by the reaction of fac-[Mo(V)(mp)(3)](-) with [Cu(I)(CH(3)CN)(4)]ClO(4). In sharp contrast to the cases of 1, 3·1.5CH(2)Cl(2), and 4·1.5CH(2)Cl(2), the Cu(I) in 5 are selectively bound to the soft S-binding sites, where each Cu(I) is shared by two [Mo(V)(mp)(3)](-) with bidentate or monodentate coordination modes. The second notable feature of 5 is found in the geometric change of the [Mo(V)(mp)(3)](-), where the original fac-form of 1 is isomerized to the mer-[Mo(V)(mp)(3)](-) in 5, which was structurally and spectroscopically characterized for the first time. Such isomerization demonstrates the structural flexibility of the [Mo(V)(mp)(3)](-). Spectroscopic studies strongly indicate that the association/dissociation between the guest metal ions and metalloligand can be modulated by solvent polarity. Furthermore, it was also found that such association/dissociation features are significantly influenced by coexisting anions such as ClO(4)(-) or B(C(6)F(5))(4)(-). This suggests that coordination bonds between the guest metal ions and metalloligand are not too static, but are sufficiently moderate to be responsive to external environments. Moreover, electrochemical data of 1 and 3·1.5CH(2)Cl(2) demonstrated that guest metal ion binding led to enhance electron-accepting properties of the metalloligand. Our results illustrate the use of a redox-active chalcogenolato complex with a simple mononuclear structure as a multifunctional metalloligand that is responsive to chemical and electrochemical stimuli.  相似文献   

16.
A cyclic voltammogram of aqueous 0.1 mol dm(-3) triflic acid solutions of the d6 bioxo-capped M-M bonded cluster [Mo3(mu3-O)2(O2CCH3)6(H2O)3]2+ at a glassy carbon electrode at 25 degrees C gives rise to an irreversible 3e- cathodic wave to a d9 Mo(III)3 species at -0.8 V vs. SCE which on the return scan gives rise to two anodic waves at +0.05 V vs. SCE (E(1/2), 1e- reversible to d8 Mo(III)2Mo(IV)) and +0.48 V vs. SCE (2e- irreversible back to d6 Mo(IV)3). The number of electrons passed at each redox wave has been confirmed by redox titration and controlled potential electrolysis which resulted in 90% recovery of [Mo3(mu3-O)2(O2CCH3)6(H2O)3]2+ following electrochemical re-oxidation at +0.8 V. A corresponding CV study of the d8 monoxo-capped W(III)2W(IV) cluster [W3(mu3-O)(O2CCH3)6(H2O)3]2+ gives rise to a reversible 1e- cathodic process at -0.92 V vs. SCE to give the d9 W(III)3 species [W3(mu3-O)(O2CCH3)6(H2O)3]+; the first authentic example of a W(III) complex with coordinated water ligands. However the cluster is too unstable (O2/water sensitive) to allow isolation. Comparisons with the cv study on [Mo3(mu3-O)2(O2CCH3)6(H2O)3]2+ suggest irreversible reduction of this complex to monoxo-capped [Mo(III)3(mu3-O)(O2CCH3)6(H2O)3]+ followed by reversible oxidation to its d8 counterpart [Mo3(mu3-O)(O2CCH3)6(H2O)3]2+ (Mo(III)2Mo(IV)) and finally irreversible oxidation back to the starting bioxo-capped cluster. Exposing the d9 Mo(III)3 cluster to air (O2) however gives a different final product with evidence of break up of the acetate bridged framework. Corresponding redox processes on d6 [W3(mu3-O)2(O2CCH3)6(H2O)3]2+ are too cathodic to allow similar generation of the monoxo-capped W(III)3 and W(III)2W(IV) clusters at the electrode surface.  相似文献   

17.
Lam WW  Man WL  Wang YN  Lau TC 《Inorganic chemistry》2008,47(15):6771-6778
The kinetics and mechanisms of the oxidation of I (-) and Br (-) by trans-[Ru (VI)(N 2O 2)(O) 2] (2+) have been investigated in aqueous solutions. The reactions have the following stoichiometry: trans-[Ru (VI)(N 2O 2)(O) 2] (2+) + 3X (-) + 2H (+) --> trans-[Ru (IV)(N 2O 2)(O)(OH 2)] (2+) + X 3 (-) (X = Br, I). In the oxidation of I (-) the I 3 (-)is produced in two distinct phases. The first phase produces 45% of I 3 (-) with the rate law d[I 3 (-)]/dt = ( k a + k b[H (+)])[Ru (VI)][I (-)]. The remaining I 3 (-) is produced in the second phase which is much slower, and it follows first-order kinetics but the rate constant is independent of [I (-)], [H (+)], and ionic strength. In the proposed mechanism the first phase involves formation of a charge-transfer complex between Ru (VI) and I (-), which then undergoes a parallel acid-catalyzed oxygen atom transfer to produce [Ru (IV)(N 2O 2)(O)(OHI)] (2+), and a one electron transfer to give [Ru (V)(N 2O 2)(O)(OH)] (2+) and I (*). [Ru (V)(N 2O 2)(O)(OH)] (2+) is a stronger oxidant than [Ru (VI)(N 2O 2)(O) 2] (2+) and will rapidly oxidize another I (-) to I (*). In the second phase the [Ru (IV)(N 2O 2)(O)(OHI)] (2+) undergoes rate-limiting aquation to produce HOI which reacts rapidly with I (-) to produce I 2. In the oxidation of Br (-) the rate law is -d[Ru (VI)]/d t = {( k a2 + k b2[H (+)]) + ( k a3 + k b3[H (+)]) [Br (-)]}[Ru (VI)][Br (-)]. At 298.0 K and I = 0.1 M, k a2 = (2.03 +/- 0.03) x 10 (-2) M (-1) s (-1), k b2 = (1.50 +/- 0.07) x 10 (-1) M (-2) s (-1), k a3 = (7.22 +/- 2.19) x 10 (-1) M (-2) s (-1) and k b3 = (4.85 +/- 0.04) x 10 (2) M (-3) s (-1). The proposed mechanism involves initial oxygen atom transfer from trans-[Ru (VI)(N 2O 2)(O) 2] (2+) to Br (-) to give trans-[Ru (IV)(N 2O 2)(O)(OBr)] (+), which then undergoes parallel aquation and oxidation of Br (-), and both reactions are acid-catalyzed.  相似文献   

18.
The anions [M(VI)O(O(2))(2)(OR)](-) and [M(VI)O(3)(OR)](-)(M = Cr, Mo, W; R = H, Me, Et, (n)Pr, (i)Pr) were transferred to the gas phase by the electrospray process. Their decomposition was examined by multistage mass spectrometry and collisional activation experiments. The molybdate and tungstate anions [M(VI)O(O(2))(2)(OR)](-) underwent parallel elimination of aldehyde (ketone) and dioxygen while the equivalent chromate underwent loss of dioxygen only. The peroxo ligands were the source of oxidising equivalents in both reactions. For each alkoxo ligand, the total yield of aldehyde for the tungstate system exceeded that for the molybdate system. Collisional activation of [M(VI)O(3)(OMe)](-) led to clean elimination of formaldehyde with the metal centre supplying the oxidising equivalents. For larger alkoxo ligands, only the chromate centre eliminated aldehyde, while the molybdate and tungstate centres underwent clean loss of alkene. Threshold activation voltages indicated that the peroxo ligands of [W(VI)O(O(2))(2)(OMe)](-) are more oxidising than the tungstate centre of [W(VI)O(3)(OMe)](-). (2)H and (18)O isotope tracing experiments were consistent with a formal hydride transfer mechanism operating for oxidation of alkoxo ligand in each system. In the solid state, anions [M(VI)O(O(2))(2)(OR)](-) are typically pentagonal pyramidal (oxo in apical site) while [M(VI)O(3)(OR)](-) are tetrahedral. The data indicate that an equatorial ligand position is the site of alkoxo oxidation in [M(VI)O(O(2))(2)(OR)](-) anions. Comparisons of the gas phase data with those for a solution phase system are made.  相似文献   

19.
Heating WTe(2), Te, and Br(2) at 390 degrees C followed by extraction with KCN gives [W(3)Te(7)(CN)(6)](2-). Crystal structures of double salts Cs(3.5)K{[W(3)Te(7)(CN)(6)]Br}Br(1.5).4.5H(2)O (1), Cs(2)K(4){[W(3)Te(7)(CN)(6)](2)Cl}Cl.5H(2)O (2), and (Ph(4)P)(3){[W(3)Te(7)(CN)(6)]Br}.H(2)O (3) reveal short Te(2)...X (X = Cl, Br) contacts. Reaction of polymeric Mo(3)Se(7)Br(4) with KNCSe melt gives [Mo(3)Se(7)(CN)(6)](2-). Reactions of polymeric Mo(3)S(7)Br(4) and Mo(3)Te(7)I(4) with KNCSe melt (200-220 degrees C) all give as final product [Mo(3)Se(7)(CN)(6)](2)(-) via intermediate formation of [Mo(3)S(4)Se(3)(CN)(6)](2-)/[Mo(3)SSe(6)(CN)(6)](2-) and of [Mo(3)Te(4)Se(3)(CN)(6)](2-), respectively, as was shown by ESI-MS. (NH(4))(1.5)K(3){[Mo(3)Se(7)(CN)(6)]I}I(1.5).4.5H(2)O (4) was isolated and structurally characterized. Reactions of W(3)Q(7)Br(4) (Q = S, Se) with KNCSe lead to [W(3)Q(4)(CN)(9)](5-). Heating W(3)Te(7)Br(4) in KCNSe melt gives a complicated mixture of W(3)Q(7) and W(3)Q(4) derivatives, as was shown by ESI-MS, from which E(3)[W(3)(mu(3)-Te)(mu-TeSe)(3)(CN)(6)]Br.6H(2)O (5) and K(5)[W(3)(mu(3)-Te)(mu-Se)(3)(CN)(9)] (6) were isolated. X-ray analysis of 5 reveals the presence of a new TeSe(2-) ligand. The complexes were characterized by IR, Raman, electronic, and (77)Se and (125)Te NMR spectra and by ESI mass spectrometry.  相似文献   

20.
Numerous Mo and W tris(dithiolene) complexes in varying redox states have been prepared and representative examples characterized crystallographically: [M(S(2)C(2)R(2))(3)](z) [M = Mo, R = Ph, z = 0 (1) or 1- (2); M = W, R = Ph, z = 0 (4) or 1- (5); R = CN, z = 2-, M = Mo (3) or W (6)]. Changes in dithiolene C-S and C-C bond lengths for 1 versus 2 and 4 versus 5 are indicative of ligand reduction. Trigonal twist angles (Θ) and dithiolene fold angles (α) increase and decrease, respectively, for 2 versus 1, 5 versus 4. Cyclic voltammetry reveals generally two reversible couples corresponding to 0/1- and 1-/2- reductions. The electronic structures of monoanionic molybdenum tris(dithiolene) complexes have been analyzed by multifrequency (S-, X-, Q-band) EPR spectroscopy. Spin-Hamiltonian parameters afforded by spectral simulation for each complex demonstrate the existence of two distinctive electronic structure types. The first is [Mo(IV)((A)L(3)(5-?))](1-) ((A)L = olefinic dithiolene, type A), which has the unpaired electron restricted to the tris(dithiolene) unit and is characterized by isotropic g-values and small molybdenum superhyperfine coupling. The second is formulated as [Mo(V)((B)L(3)(6-))](1-) ((B)L = aromatic dithiolene, type B) with spectra distinguished by a prominent g-anisotropy and hyperfine coupling consistent with the (d(z(2)))(1) paramagnet. The electronic structure disparity is also manifested in their electronic absorption spectra. The compound [W(bdt)(3)](1-) exhibits spin-Hamiltonian parameters similar to those of [Mo(bdt)(3)](1-) and thus is formulated as [W(V)((B)L(3)(6-))](1-). The EPR spectra of [W((A)L(3))](1-) display spin-Hamiltonian parameters that suggest their electronic structure is best represented by two resonance forms {[W(IV)((A)L(3)(5-?))](1-) ? [W(V)((A)L(3)(6-))](1-)}. The contrast with the corresponding [Mo(IV)((A)L(3)(5-?))](1-) complexes highlights tungsten's preference for higher oxidation states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号