首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
We present an all solid-state Yb:S-FAP laser system running on the three-level laser transition at 985 nm. The pump source was a high fill-factor laser diode bar, with the output reformatted using a two-mirror beamshaping system to produce a rectangular pump beam that focused to a square spot. A nearly on-axis multipassing system was used to obtain four pump passes through a 1.6 mm Yb:S-FAP laser crystal. Gain-switched three-level laser output was achieved with an efficiency of 4.3% with respect to incident pump power. Electro-optic Q-switching produced 0.12 mJ pulses for a pump pulse energy of 11 mJ. Intra-cavity second-harmonic generation yielded a maximum pulse energy at 492.5 nm of 12 μJ.  相似文献   

2.
We demonstrated continuous-wave (CW) and Q-switched operation of a Tm,Ho:YAP ring laser at 77 K. The maximum CW output power of 2 W at 2130.7 nm was obtained under the incident pump power of 12 W, corresponding to a slope efficiency of 23% and an optical-to-optical efficiency of 16.7%. For the Q-switched regime the maximum output energy of 5 mJ with the pulse width of 160 ns at the repetition rate of 100 Hz was achieved, corresponding to a peak power of 31.25 kW.  相似文献   

3.
We demonstrated continuous-wave (CW) and Q-switched operation of a room-temperature Ho:YAP ring laser that is resonantly end-pumped by a diode-pumped Tm:YLF laser at 1.91 ??m. Continuous wave output power of 3 W at 2119 nm is obtained under the absorbed pump power of 10.17 W, corresponding to a slope efficiency of 60%. For the Q-switched regime the maximum pulse energy of 1.58 mJ and the minimum pulse width of 590 ns at the repetition rate of 1 kHz are achieved.  相似文献   

4.
We report the continuous wave and acousto-optically Q-switched operation of an in-pumped a-cut Ho:YAP laser at room temperature. We obtained a continuous-wave output power of 17.2 W at 2118 nm under an absorbed pump power of 29.8 W, corresponding to a slope efficiency of 63.2 %. For the Q-switched mode, we achieved a maximum pulse energy of about 1.7 mJ and a minimum pulse width of 24 ns at a repetition rate of 10 kHz, resulting in a peak power of 70.8 kW.  相似文献   

5.
We elaborate a diode-end-pumped actively Q-switched injection-seeded Tm:LuAG laser. To achieve power scaling with good beam quality, we construct a more flexible laser with longer cavity accommodated strongly aberrated thermal lens in a Tm:LuAG laser and took special care in designing the laser resonator. Under Q-switched operation, we achieve a maximum output energy of 2.6 mJ with a pulse width of 318.2 ns at a pulse repetition frequency of 50 Hz. To control the spectral, temporal, and phase characteristics of the Tm:LuAG laser, the ring laser is injected by a seed laser, which provides a 50 mW single longitudinal-mode laser output at a wavelength of 2,022.6 nm. We achieve an output energy of 1.8 mJ with a pulse width of 293.0 ns after employing the injection seed.  相似文献   

6.
We describe the design and operation of a diode-pumped compact and efficient Nd:YAB laser operating at 1338 nm. We use a passive Q-switch V:YAG crystal to achieve 1 mJ Q-switched pulses at the laser output. The laser elaborated provides an average power of 1.5 W in the CW regime and 1 W in Qswitched mode with an optical efficiency of 15 and 10%, respectively. A 65 mm plano-concave cavity is formed with an output in the TEM00 mode. At a pulse width of 15 ns, the achieved peak power is 66 kW.  相似文献   

7.
We report an acoustic Q-switched Ho:YAG laser end-pumped by a 1,908 nm Tm:YLF laser. The doping concentration of Ho:YAG crystal is 2 at.%, and dimensions ø5×20 mm. We measure the pulsedlaser output characteristics of the Ho:YAG laser at different repetition rates (RF). Under optimum experimental conditions, the high-power 2.1 μm output power reaches 4.17 W at a given pump power of 13.25 W and repetition frequency of 8.0 kHz. For a slope efficiency of 16.88%, the corresponding optical-to-optical conversion efficiency reaches 31.47%. We obtain a minimum single pulsed energy of 7.36 mJ and a pulse width of 52.8 ns at a pump power of 10.52 W and repetition rate of 0.5 kHz, with a peak power of 139 kW.  相似文献   

8.
We report a 914 nm LD end-pumped high power, high beam quality (M x 2 = 1.378, M y 2 = 1.287) electro-optical Q-switched Nd:YVO4 laser with TEM00-mode output. At the absorbed pump power of 67.6 W, a 31.8 W 1064 nm Q-switched laser with 43 ns pulse duration was achieved at 100 kHz repetition rate, corresponding to an optical-to-optical efficiency of 47%. The maximum pulse energy and shortest pulse width were 1.67 mJ and 18.5 ns at 10 kHz, and the calculated peak power was 90.3 kW. To the best of our knowledge, this is the highest Q-switched output power ever obtained for a Nd:YVO4 oscillator pumped at 914 nm.  相似文献   

9.
We demonstrate a stable and efficient passively Q-switched 2.8 μm Er3+-doped ZBLAN fiber laser with a broadband semiconductor saturable absorber mirror. Enabled by the broadband optical modulator, the stable Q-switched fiber laser can deliver a maximum average power over 700 mW with corresponding per-pulse energy of 8.19 μJ and a pulse width of 1.3 μs at a repetition rate of 88.6 kHz under an incident pump power of 3.8 W. In addition, the slope efficiency can reach 22.5%. To the best of our knowledge, this is the highest reported slope efficiency for the passively Q-switched Er3+-doped ZBLAN fiber laser.  相似文献   

10.
We demonstrate a high-repetition-rate, short-pulse-width pulse burst laser from a compact 885 nm laser diode directly pumped by a passively Q-switched YAG/Nd:YAG/Cr:YAG laser. We investigate the output laser characteristics with different output transmissions and spot sizes of the pumping laser and compare these characteristics. After optimization, we achieve a shortest pulse width of 1.4 ns generated by a 1,064 nm pulse burst laser. The single-pulse energy reaches 239 μJ at 86.3 kHz, with a peak power of 117.2 kW.  相似文献   

11.
We present an efficient and compact passively Q-switched flash-lamp-pumped Nd:Ce:YAG singlelongitudinal-mode (SLM) laser system. With Cr4+:YAG as a saturable absorber, we design a three-plan resonant reflector for generating smooth SLM Q-switched pulses. We provide a theoretical calculation and optimization of the resonant reflector for improving the longitudinal-mode selection ability. We obtain a stable SLM output with a single-pulse energy of 10 mJ and a pulse width of 10.7 ns at 10 Hz. The near-diffraction-limited beam-quality parameter M2 is less than 1.5. The system can operate with a repetition rate from 1 to 10 Hz. We achieve the stable laser operation with less than 3% fluctuation of the pulse energy within 10,000 shots.  相似文献   

12.
We develop a laser utilizing second harmonic generation that exhibits both high single-pulse energy and high beam quality. The system starts with a double-arched laser-diode-array stagger-pumped electro-optic Q-switched Nd:YAG with a thermal lensing compensated convex-concave resonator. The 1,064 nm output beam is then frequency doubled in an extracavity KTP double-crystal assembly that offsets birefringence walk-off. We obtain a maximum single-pulse energy of 72.7 mJ at 532 nm with 176 mJ at 1,064 nm. The corresponding optical-to-optical conversion efficiency is 41.3%, and the pulse width is 9.2 ns at a repetition rate of 20 Hz. The beam quality factor M2 is 1.83 in both horizontal and vertical directions at the maximum output energy, and the energy stability is better than 3% across half an hour.  相似文献   

13.
We demonstrate for the first time a Cr4+:YAG passively Q-switched 1066 nm pulse-burst laser under 879 nm direct pump with a novel Nd:Gd0.69Y0.3NbO4 crystal. The output laser characteristics with different pump repetition rates and different Cr4+:YAG initial transmission are studied. Without the Cr4+:YAG, we obtain a maximum output energy of 2.55 mJ at an absorbed pump energy of 5.79 mJ with the highest 48% slope efficiency. The pulse-burst laser contains a maximum of 7 pulses for a Cr4+:YAG initial transmission of 55% and a pump repetition rate of 1 kHz. The single-pulse energy and narrowest pulse width reach 160 μJ and 5.5 ns at 38.2 kHz, with a peak power of 32 kW.  相似文献   

14.
We report a high-power, long-wavelength infrared ZnGeP2 (ZGP) optical parametric oscillator (OPO) pumped by a Q-switched Tm,Ho:GdVO4 laser. The wavelength tuning range of 7.8–9.9 μm is realized by rotating the external angle of the ZGP crystal. We obtain an output power over 30 mW across the whole wavelength range and achieve a 1.71 W output power at 8.08 μm by transmitting the OPO parameters, corresponding to an idler laser slope efficiency of 12.1%.  相似文献   

15.
The free running and Q-switched operation of 2 μm Tm:YAG lasers side-pumped by pulse laser diodes were reported. In the free running mode the maximum output energies were 102.5 mJ at 1 Hz and 94.6 mJ at 10 Hz, respectively. With an acousto-optic modulator in the laser resonator, 21 mJ 2 μm Q-switched pulse was obtained, with a pulse width of about 330 ns. The dependences of the output energy and the efficiency on the laser resonator parameters were investigated.  相似文献   

16.
H. Aman 《Laser Physics》2012,22(8):1286-1291
In this paper the construction of a mechanically Q-switched diode side pumped Nd:YAG laser system is described. It consists of a 50 cm long plane-plane resonator Q-switched with a combination of a rotating prism and a mirror. With an optical to optical efficiency of 25% Q-switched pulses (@1064) of 48 mJ and 8 ns are obtained at a rep-rate of 30 Hz with an output in near TEMoo mode. At a peak power of 6 MW the M 2 value is found to be 1.92. The laser is frequency doubled and then tested on a 50 ??m thick tantalum foil which results in circular holes of diameter 13 ??m in it.  相似文献   

17.
We demonstrate an intracavity-triggered passively Q-switched Nd:YVO4 laser within a diode-end-pumped configuration. We employ a Cr4+:YAG saturable absorber as the passive Q switch and an Nd:LiYF4 (YLF) laser as the laser triggering of the Q-switched laser. Since we use the same Cr4+:YAG crystal and output coupler with the Nd:YVO4 laser, the Cr4+:YAG Q switch is triggered inside the Nd:YLF laser cavity. As a result, the timing jitter in standard deviation of Nd:YVO4 laser can be reduced to 16 ns.  相似文献   

18.
胡文涛  周复正 《光学学报》1995,15(8):83-986
报道准连续60W激光二极管列阵侧面泵浦Nd:YLF固体激光器的研究结果,当器件的动转重复频率为30Hz时,得到4.4mJ的1.047μm激光输出,光-光转换效率达到18.3%,斜率效率达24.4%。声光和电光调Q,得到能量为2.2mJ,脉宽分别为50ns和30ns的脉冲输出。  相似文献   

19.
We demonstrate a diode-pumped passively Q-switched Nd:GdYAG mixed garnet laser at 1,123 nm. A Cr4+:YAG crystal with an initial transmission of 97% is used as the saturable absorber. The maximum average output power is 1.05 W at an absorbed pumping power of 8.12 W. A single-pulse energy can reach up to 78.9 μJ, with a corresponding pulse repetition rate of 13.3 kHz.  相似文献   

20.
We design an efficient passively Q-switched laser using a composite YAG/Yb:YAG crystal as the laser gain medium and a Cr4+:YAG crystal as a saturable absorber. We obtain an average output power of 1.81 W in 1030 nm laser at an absorbed pump power of 4.8 W, corresponding to an optical-to-optical efficiency of 37.7% and a slope efficiency of 47.3%. The pulsed laser has a repetition rate of about 28.6 kHz and a pulse width of 15.8 ns, with the highest peak power of 4 kW. In addition, using a LBO as the intracavity frequency doubler, we obtain a maximum power of 246 mW in 515 nm pulsed laser at an absorbed pump power of 3.8 W.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号