首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
One of the challenges in functional brain imaging is integration of complementary imaging modalities, such as magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI). MEG, which uses highly sensitive superconducting quantum interference devices (SQUIDs) to directly measure magnetic fields of neuronal currents, cannot be combined with conventional high-field MRI in a single instrument. Indirect matching of MEG and MRI data leads to significant co-registration errors. A recently proposed imaging method--SQUID-based microtesla MRI--can be naturally combined with MEG in the same system to directly provide structural maps for MEG-localized sources. It enables easy and accurate integration of MEG and MRI/fMRI, because microtesla MR images can be precisely matched to structural images provided by high-field MRI and other techniques. Here we report the first images of the human brain by microtesla MRI, together with auditory MEG (functional) data, recorded using the same seven-channel SQUID system during the same imaging session. The images were acquired at 46 microT measurement field with pre-polarization at 30 mT. We also estimated transverse relaxation times for different tissues at microtesla fields. Our results demonstrate feasibility and potential of human brain imaging by microtesla MRI. They also show that two new types of imaging equipment--low-cost systems for anatomical MRI of the human brain at microtesla fields, and more advanced instruments for combined functional (MEG) and structural (microtesla MRI) brain imaging--are practical.  相似文献   

2.
在Bruker MSL-400微成象谱仪上建立了一个研究大分子溶液流变性质的核磁共振成象的装置.此方法取决于两个方面:1)具有一个能产生稳态流动的Couete cell装置,2)使用能得到正常核磁共振流速象的脉冲序列.从成象数据很易得到剪切应力与剪切速度的关系.  相似文献   

3.
This paper aims to model ultrasound vibro-acoustography to improve our understanding of the underlying physics of the technique thus facilitating the collection of better images. Ultrasound vibro-acoustography is a novel imaging technique combining the resolution of high-frequency imaging with the clean (speckle-free) images obtained with lower frequency techniques. The challenge in modeling such an experiment is in the variety of scales important to the final image. In contrast to other approaches for modeling such problems, we break the experiment into three parts: high-frequency propagation, non-linear interaction and the propagation of the low-frequency acoustic emission. We then apply different modeling strategies to each part. For the high-frequency propagation we choose a parabolic approximation as the field has a strong preferred direction and small propagation angles. The non-linear interaction is calculated directly with Fourier methods for computing derivatives. Because of the low-frequency omnidirectional nature of the acoustic emission field and the piecewise constant medium we model the low-frequency field with a surface integral approach. We use our model to compare with experimental data and to visualize the relevant fields at points in the experiment where laboratory data is difficult to collect, in particular the source of the low-frequency field. To simulate experimental conditions we perform the simulations with the two frequencies 3 and 3.05 MHz with an inclusion of varying velocity submerged in water.  相似文献   

4.
This paper describes a study performed to evaluate the feasibility of using a 1.5-T whole-body magnetic resonance imaging (MRI) equipment, in combination with pharmacokinetic modeling, to obtain in vivo information about the morphology and perfusion of tarantulas (Eurypelma californicum). MRI was performed on three tarantulas using spin-echo sequences for morphological imaging and a rapid spoiled gradient-echo sequence for dynamic imaging during and after contrast medium (CM; Gd-DTPA) injection. Signal enhancement in dynamic measurements was evaluated with a pharmacokinetic two-compartment model. Spin-echo images showed morphological structures well. Dynamic images were of sufficient quality and allowed a model analysis of CM kinetics, which provides information about regional perfusion. In conclusion, morphological and dynamic contrast-enhanced MRI of tarantulas is feasible with a conventional clinical scanner. Studies of this kind are therefore possible without a dedicated high-field animal scanner.  相似文献   

5.

Purpose

Quantitative imaging of the rat skin was performed using magnetic resonance imaging (MRI) at 900 MHz.

Materials and methods

A number of imaging techniques utilized for multiple contrast included magnetization transfer contrast, spin-lattice relaxation constant (T1-weighting), combination of T2-weighting with magnetic field inhomogeneity (T2*-weighting), magnetization transfer weighting and diffusion tensor weighting. These were used to obtain 2D slices and 3D multislice-multiecho images with high magnetic resonance contrast. These 2D and 3D imaging techniques were combined to achieve high-resolution MRI.

Results

Oil–water phantom showed distinct fat-water contrast. The dermis and epidermis, including the stratum corneum remnants, of nude rat skin were distinct due to their proton magnetic resonance as a result of proton interactions with the skin interstitial tissue. Combined details obtained from high-resolution, high-quality ex vivo skin images with different multicontrast characteristics generated better differentiation of skin layers, sublayers and significant correlation (r2=0.4927 for MRI area, r2=0.3068 for histology area; P<.0148) of MR data with co-registered histological areas of the epidermis as well as the hair follicle.

Conclusion

The multiple contrast approach provided a noninvasive ex vivo MRI visualization with semi-quantitative assessment of the major skin structures including the stratum corneum remnants, epidermis, hair, papillary dermis, reticular dermis and hypodermis.  相似文献   

6.
Three-dimensional ESR imaging of a living rat has been performed by an L-band ESR system, which is composed of an L-band ESR spectrometer, a field gradient coil, and a data processor. The imaging was carried out by Lauterbur's method. A nitroxide, 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (Carbamoyl-PROXYL), was used as an imaging agent in saline solution at a concentration of 0.2 M and administered intraperitoneally to obtain a constant concentration in the head for about an hour. It took about 40 min to obtain one set of ESR-CT images. The cross-sectional images were made, both as coronal and horizontal images. In the images of the rat head the nitroxide-rich region was clearly distinguished from the deficient region. The nitroxide-deficient areas corresponded well to the brain of the rat.  相似文献   

7.
PURPOSE: To evaluate the application of high-resolution MRI methodology for characterizing the fluid velocity field and evaluate fluid shear field within a simplified in vitro model of a bone-implant interface. MATERIALS AND METHODS: The study used a specific micromotion canine bone implant that has been used for over a decade in the experimental evaluation of anatomical, biomaterial, mechanical and surgical factors influencing the quality of the implant interface. To allow its implementation in an MR coil, a nonmagnetic model of the micromotion implant was fabricated. The model consisted of a cylinder of polymethylmethacrylate (PMMA) representing the implant, located within an annular controlled gap into a block of coralline-derived bulk porous hydroxyapatite (HA; Interpore Cross International, Irvine, CA, USA). The assembly was potted in a polycarbonate shell and connected to a gravity-feed flow system consisting of a water fluid reservoir and peristaltic pump. Cross-sectional fluid velocity images through the principal axis of the implant were generated using a phase-encoding MR imaging technique; axial fluid flow was derived, and fluid shear was evaluated using a Newtonian fluid model. RESULTS: Due to the nonuniform gap of the actual experimental construct, a highly nonuniform flow through the annular gap and a secondary flow through the porous HA block were observed. Axial velocity magnitudes in the range 0.04 to 14 mm/s were measured, and the flow velocities within the annular gap and the surrounding bone differed by nearly two orders of magnitude. Image analysis showed that 95% of total flow passed through the annular gap and 5% was transported through the porous HA block. Fluid shear was computed within the porous structure and the annular gap, and they differed by one order of magnitude. CONCLUSION: We demonstrated that high-resolution MR flow imaging has the resolution to measure fluid transport processes noninvasively through a nonmagnetic model bone implant. Gap fluid flow and fluid flow into the permeable skeleton (HA block) were quantified, and these data allowed the noninvasive determination of fluid shear. These promising results are encouraging for applications in biological tissue, artificial bone substitutes, tissue engineering and clinically relevant studies concerning implant fixation.  相似文献   

8.
Multi-modality imaging (such as PET-CT) is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET, fused with anatomical images created by MRI, allow the correlation of form with function. Perhaps more exciting than the combination of anatomical MRI with PET, is the melding of PET with MR spectroscopy (MRS). Thus, two aspects of physiology could be combined in novel ways to produce new insights into the physiology of normal and pathological processes. Our team is developing a system to acquire MRI images and MRS spectra, and PET images contemporaneously. The prototype MR-compatible PET system consists of two opposed detector heads (appropriate in size for small animal imaging), operating in coincidence mode with an active field-of-view of approximately 14 cm in diameter. Each detector consists of an array of LSO detector elements coupled through a 2-m long fiber optic light guide to a single position-sensitive photomultiplier tube. The use of light guides allows these magnetic field-sensitive elements of the PET imager to be positioned outside the strong magnetic field of our 3T MRI scanner. The PET scanner imager was integrated with a 12-cm diameter, 12-leg custom, birdcage coil. Simultaneous MRS spectra and PET images were successfully acquired from a multi-modality phantom consisting of a sphere filled with 17 brain relevant substances and a positron-emitting radionuclide. There were no significant changes in MRI or PET scanner performance when both were present in the MRI magnet bore. This successful initial test demonstrates the potential for using such a multi-modality to obtain complementary MRS and PET data.  相似文献   

9.
Echo planar imaging (EPI) is an ultrafast magnetic resonance imaging (MRI) technique that allows one to acquire a 2D image in about 100 ms. Unfortunately, the standard EPI images suffer from substantial geometric distortions, mainly originating from susceptibility differences in adjacent tissues. To reduce EPI distortions, correction methods based on a field map, which is a map of the off-resonance frequencies, have been developed. In this work, a nonlinear least squares estimator is used to optimize the estimation of the field map of the B0 field. The model of the EPI and reference data includes parameters for the phase evolution, the complex magnitude, the relaxation of the MRI signal and the EPI-specific phase difference between odd and even echoes, and from these parameters, additional corrections might be computed. The reference data required to estimate the field map can be acquired with a modified EPI-sequence. The proposed method is tested on simulated as well as experimental data and proves to be significantly more robust against noise, compared to the previously suggested method.  相似文献   

10.
In this study, magnetic resonance imaging (MRI) is used to visualize acoustic streaming in liquids. A single-shot spin echo sequence (HASTE) with a saturation band perpendicular to the acoustic beam permits the acquisition of an instantaneous image of the flow due to the application of ultrasound. An average acoustic streaming velocity can be estimated from the MR images, from which the ultrasonic absorption coefficient and the bulk viscosity of different glycerol-water mixtures can be deduced. In the same way, this MRI method could be used to assess the acoustic field and time-average power of ultrasonic transducers in water (or other liquids with known physical properties), after calibration of a geometrical parameter that is dependent on the experimental setup.  相似文献   

11.
Phase contrast techniques in combination with k-space segmented CINE imaging are widely used for the quantitative assessment of blood flow or tissue motion. The temporal resolution of the corresponding pulse sequences plays an important role concerning the potential of the method to fully detect time resolved flow or motion patterns. A further improvement of temporal or spatial resolution in phase contrast CINE MRI can be achieved by the application of view sharing. Based on simulations with point-spread-functions resulting from different cyclic flow or motion patterns an analysis of view sharing techniques in combination with phase contrast MRI is presented. Velocity mapping properties and the role of different k-space regions concerning the resulting values in the phase images and thus encoded velocities were investigated. It could be shown that the velocity induced phase shifts in phase contrast techniques are mainly encoded in the central sections of k-space which makes view sharing also suitable for velocity mapping. As a result the use of appropriate sampling and data acquisition schemes permits the assessment of flow or motion patterns with significantly improved temporal resolution without loss of functional information. In addition phantom measurements with an oscillation phantom were performed in order to validate the simulation results and to demonstrate the potential of view sharing techniques to accelerate phase contrast imaging and improve the detection of the underlying flow or motion dynamics.  相似文献   

12.
磁共振成像(MRI)是一种无电离辐射的非介入性的眼内肿瘤检测方法,但分辨率和运动伪影是成像过程中不易克服的困难.以往的扫描方法或是不可避免的引入运动伪影,或是需要受试者做精确的配合,增加了成像的难度,给受试者带来不舒适的体验.本文提出了一种以超分辨率理论为基础的新的磁共振眼球成像方法,使用一种特制的眼球线圈,对眼部区域扫描一系列动态的图像,使得不同方向上的采集分辨率互补.最后经过预处理、配准、超分辨率重建等操作,得到高质量的磁共振眼球图像.实验结果表明,这种方法可以在不需要受试者做额外配合工作的情况下,得到更加清晰的磁共振眼球图像.  相似文献   

13.
INTRODUCTION: The blood-brain barrier (BBB) plays an important role in the pathophysiology of a number of central nervous system disorders. In the past, a number of laboratory techniques have been proposed to quantify permeability coefficient ki, an important index of barrier function. Recently, magnetic resonance imaging (MRI) has been used to estimate ki based on graphical plot technique. The MR technique was found to be in good agreement with the gold standard, quantitative autoradiography (QAR). However, a reduced image signal-to-noise ratio, among other factors such as partial volume effects, did not allow reliable estimation of permeability coefficients. This proof-of-principle study proposes the use of Kalman filter as a filtering technique for a reliable estimation of permeability coefficients. The results are compared to those obtained using the Wiener filter technique. MATERIALS AND METHODS: MRI experiments were performed in Wistar rats (N=2) using a 4.7-T Bruker Biospec MR system (Bruker Biospin, Billerica, MA). After acquiring localizer images, T2-weighted diffusion-weighted imaging images were acquired. Finally, a rapid T1 mapping protocol was implemented to acquire one pre-gadolinium diethylenetriamine pentaacetic acid baseline data set followed by postinjection data sets at 3-min intervals for 45 min. Data were postprocessed with and without the application of Kalman and Wiener filters to obtain an estimate of ki. RESULTS AND DISCUSSION: Comparing T1 maps, Patlak plots and permeability maps with and without the Kalman filtering presented several interesting observations. Kalman-filtered Patlak plots, compared to nonfiltered plots, showed that discrete data points on the plot were closer to the line fit. The number of time points used for the construction of the graphical plot had no effect on permeability coefficient estimates when the Kalman filter was used. A box-and-whiskers plot showed longer Y-error bars for nonfiltered and Wiener data compared to Kalman-filtered data. These observations suggest that it may be possible to obtain reliable permeability coefficient estimates in a short study time by applying the Kalman filter to the data. Future work involves investigating the application of this filter on a large-sample-size animal study and evaluating the role of partial volume effects on BBB permeability estimation.  相似文献   

14.
This work shows that complete spatial information of periodic pulsatile fluid flows can be rapidly obtained by Bayesian probability analysis of flow encoded magnetic resonance imaging data. These data were acquired as a set of two-dimensional images (complete two-dimensional sampling of k-space or reciprocal position space) but with a sparse (six point) and nonuniform sampling of q-space or reciprocal displacement space. This approach enables more precise calculation of fluid velocity to be achieved than by conventional two q-sample phase encoding of velocities, without the significant time disadvantage associated with the complete flow measurement required for Fourier velocity imaging. For experimental comparison with the Bayesian analysis applied to nonuniformly sampled q-space data, a Fourier velocity imaging technique was used with one-dimensional spatial encoding within a selected slice and a uniform sampling of q-space using 64 values of the pulsed gradients to encode fluid flow. Because the pulsatile flows were axially symmetric within the resolution of the experiment, the radial variation of fluid velocity, in the direction of the pulsed gradients, was reconstructed from one-dimensional spatial projections of the velocity by exploiting the central slice theorem. Data were analysed for internal consistency using linearised flow theories. The results show that nonuniform q-space sampling followed by Bayesian probability analysis is at least as accurate as the combined uniform q-space sampling with Fourier velocity imaging and projection reconstruction method. Both techniques give smaller errors than a two-point sampling of q-space (the conventional flow encoding experiment).  相似文献   

15.
A comparative study of tissue redox-status imaging using commonly used redox sensitive nitroxides has been carried out using electron paramagnetic resonance imaging (EPRI), Overhauser magnetic resonance imaging (OMRI) and conventional T(1)-weighted magnetic resonance imaging, MRI. Imaging studies using phantoms of different nitroxides at different concentration levels showed that EPRI and OMRI sensitivities were found to be linearly dependent on line width of nitroxides up to 2 mM, and the enhancement in MRI intensity was linear up to 5 mM. The sensitivity and resolution of EPRI and OMRI images depended significantly on the line width of the nitroxides whereas the MRI images were almost independent of EPR line width. Reduction of the paramagnetic 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (3CP) by ascorbic acid (AsA) to the diamagnetic by hydroxylamine was monitored from a sequence of temporal images, acquired using the three imaging modalities. The decay rates determined by all the three modalities were found to be similar. However the results suggest that T(1)-weighted MRI can monitor the redox status, in addition to providing detailed anatomical structure in a short time. Therefore, a combination of MRI with nitroxides as metabolically responsive contrast agents can be a useful technique for the in vivo imaging probing tissue redox status.  相似文献   

16.
This paper proposes a novel algorithm using an artificial neural network for modeling simultaneously both a 3-D flow velocity vector and a concentration field. The neural network is trained so that four outputted values of the network, three components of a 3-D velocity vector and a concentration of substances such as air pollutants or bacilli, agree with measured ones and additionally the continuity and diffusion equations are satisfied in the flow field. An approximate model for the velocity and concentration field can be constructed in the neural network from sparsely measured data. When any 3-D position, (x, y, z), is inputted to the neural network model, it outputs a 3-D velocity vector and a concentration at the position. The entire 3-D velocity vector and concentration field, therefore, can be easily estimated using the model. To validate the algorithm, the smoke concentration distribution estimated from a very limited set of measured data is compared with the measured one in which most of the data is unused for the modeling. Even from sparsely measured velocity vectors and smoke concentrations, the novel algorithm gives the entire concentration distribution whose flow characteristics are almost similar to the experimental result.  相似文献   

17.
Pogue BW  Paulsen KD 《Optics letters》1998,23(21):1716-1718
Near-infrared (NIR) optical image reconstruction that incorporates magnetic resonance image (MRI) structural data was tested in a series of simulated reconstructions. NIR diffuse tomography generally suffers from comparatively low spatial resolution. By using the fine structural detail that is available with MRI, combined with the functional information of NIR spectroscopy, it is possible to design a new image-reconstruction methodology that provides high-resolution images that are correlated with hemoglobin concentration and oxygen saturation. To test this concept a MRI spin-echo image of a rat cranium was used to obtain an outline of the bone, brain, and muscle tissues, and this information was incorporated into an iterative-based diffuse tomography reconstruction. These simulations represent what is believed to be the first attempt at evaluating a spatially constrained iterative-reconstruction MRI-NIR imaging modality for brain tissue.  相似文献   

18.
Three-dimensional (3D) position and velocity information can be extracted by directly analysing the scattering patterns in velocimetry imaging of seeding particles using real-time CCD cameras. A Fraunhöfer diffraction simplification of generalised Lorenz–Mie theory is shown to yield a representative model of particle position, such that particle position can be approximately deduced from typical experimental particle images. Data are obtained by pattern-matching theoretical to experimental images using a Nelder–Mead algorithm, subject to digitisation considerations and the concept of “locales”. In this way, information about the characteristics of positional error as a function of magnification, pixel size, intensity resolution, and spatial resolution can be derived. This work shows that an optimum magnification exists, beneath which error begins to increase drastically. A practical application is demonstrated. The theory, simulations and experimental verification of this basic problem are discussed.  相似文献   

19.
Parallel MRI at microtesla fields   总被引:2,自引:2,他引:0  
Parallel imaging techniques have been widely used in high-field magnetic resonance imaging (MRI). Multiple receiver coils have been shown to improve image quality and allow accelerated image acquisition. Magnetic resonance imaging at ultra-low fields (ULF MRI) is a new imaging approach that uses SQUID (superconducting quantum interference device) sensors to measure the spatially encoded precession of pre-polarized nuclear spin populations at microtesla-range measurement fields. In this work, parallel imaging at microtesla fields is systematically studied for the first time. A seven-channel SQUID system, designed for both ULF MRI and magnetoencephalography (MEG), is used to acquire 3D images of a human hand, as well as 2D images of a large water phantom. The imaging is performed at 46 mu T measurement field with pre-polarization at 40 mT. It is shown how the use of seven channels increases imaging field of view and improves signal-to-noise ratio for the hand images. A simple procedure for approximate correction of concomitant gradient artifacts is described. Noise propagation is analyzed experimentally, and the main source of correlated noise is identified. Accelerated imaging based on one-dimensional undersampling and 1D SENSE (sensitivity encoding) image reconstruction is studied in the case of the 2D phantom. Actual threefold imaging acceleration in comparison to single-average fully encoded Fourier imaging is demonstrated. These results show that parallel imaging methods are efficient in ULF MRI, and that imaging performance of SQUID-based instruments improves substantially as the number of channels is increased.  相似文献   

20.
A gradient echo rapid velocity and acceleration imaging sequence (GERVAIS) has been developed and implemented to image liquid flow within a narrow packed bed. Two-dimensional velocity images have been acquired with an in-plane pixel size of 781 microm x 781 microm, with a data acquisition time of 20 ms for a single velocity component. Images of the x, y and z velocity vectors are reported. Data are reported for Reynolds numbers (based on particle diameter) of 200 and 300. In each case, GERVAIS images are compared with the results of a standard spin-echo phase-encoding velocity measurement. At Re = 200, steady-state flow is expected and the velocity images acquired using both techniques are consistent. At Re = 300, the GERVAIS sequence is able to image the unsteady-state flow field within this system. In contrast, the standard phase-encoding velocity measurement contains significant artefacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号