首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bidentate ligands can lead to stable eta(1)-allyl complexes of Pd(II). A novel chelating phosphonite-oxazoline P,N ligand, abbreviated NOPO(Me2), has been prepared by reaction of 6-chloro-6H-dibenz[c,e][1,2]oxaphosphorin with the lithium alcoholate derived from 4,4-dimethyl-2-(1-hydroxy-1-methylethyl)-4,5-dihydrooxazole. Its reaction with [Pd(eta(3)-C(3)H(5))(micro-Cl)](2) afforded the new eta(1)-allyl Pd complex [PdCl(eta(1)-C(3)H(5))(NOPO(Me2))] 2 in 91% yield. This constitutes a still rare example of structurally characterized eta(1)-allyl Pd(II) complex. Chloride abstraction led to the corresponding cationic eta(3)-allyl complex [Pd(eta(3)-C(3)H(5))(NOPO(Me2))]PF(6) 3, which has also been characterized by X-ray diffraction. CO insertion into the Pd-C sigma-bond of the eta(1)-allyl ligand of 2 afforded the corresponding 3-butenoyl palladium complex [PdCl[C(O)C(3)H(5)](NOPO(Me2))] 4 under mild conditions, which supports the view that CO insertion into eta(3)-allyl palladium cationic complexes occurs via first coordination of the counterion to form a more reactive eta(1)-allyl intermediate.  相似文献   

2.
The reactivity of (eta(3)-allyl)palladium chloro dimers [(1-R-eta(3)-C(3)H(4))PdCl](2) (R = H or Me) towards a sterically hindered diphosphazane ligand [EtN{P(OR)(2)}(2)] (R = C(6)H(3)(Pr(i))(2)-2,6), has been investigated under different reaction conditions. When the reaction is carried out using NH(4)PF(6) as the halide scavenger, the cationic complex [(1-R-eta(3)-C(3)H(4))Pd{EtN(P(OR)(2))(2)}]PF(6) (R = H or Me) is formed as the sole product. In the absence of NH(4)PF(6), the initially formed cationic complex, [(eta(3)-C(3)H(5))Pd{EtN(P(OR)(2))(2)}]Cl, is transformed into a mixture of chloro bridged complexes over a period of 4 days. The dinuclear complexes, [(eta(3)-C(3)H(5))Pd(2)(mu-Cl)(2){P(O)(OR)(2)}{P(OR)(2)(NHEt)}] and [Pd(mu-Cl){P(O)(OR)(2)}{P(OR)(2)(NHEt)}](2) are formed by P-N bond hydrolysis, whereas the octa-palladium complex [(eta(3)-C(3)H(5))(2-Cl-eta(3)-C(3)H(4))Pd(4)(mu-Cl)(4)(mu-EtN{P(OR)(2)}(2))](2), is formed as a result of nucleophilic substitution by a chloride ligand at the central carbon of an allyl fragment. The reaction of [EtN{P(OR)(2)}(2)] with [(eta(3)-C(3)H(5))PdCl](2) in the presence of K(2)CO(3) yields a stable dinuclear (eta(3)-allyl)palladium(I) diphosphazane complex, [(eta(3)-C(3)H(5))[mu-EtN{P(OR)(2)}(2)Pd(2)Cl] which contains a coordinatively unsaturated T-shaped palladium center. This complex exhibits high catalytic activity and high TON's in the catalytic hydrophenylation of norbornene.  相似文献   

3.
The bromocyclopentadienyl complex [(eta5-C5H4Br)Re(CO)3] is converted to racemic [(eta5-C5H4Br)Re(NO)(PPh3)(CH2PPh2)] (1 b) similarly to a published sequence for cyclopentadienyl analogues. Treatment of enantiopure (S)-[(eta5-C5H5)Re(NO)(PPh3)(CH3)] with nBuLi and I2 gives (S)-[(eta5-C5H4I)Re(NO)(PPh3)(CH3)] ((S)-6 c; 84 %), which is converted (Ph3C+ PF6 -, PPh2H, tBuOK) to (S)-[(eta5-C5H4I)Re(NO)(PPh3)(CH2PPh2)] ((S)-1 c). Reactions of 1 b and (S)-1 c with Pd[P(tBu)3]2 yield [{(eta5-C5H4)Re(NO)(PPh3)(mu-CH2PPh2)Pd(mu-X)}2] (10; X = b, Br, rac/meso, 88 %; c, I, S,S, 22 %). Addition of PPh3 to 10 b gives [(eta5-C5H4)Re(NO)(PPh3)(mu-CH2PPh2)Pd(PPh3)(Br)] (11 b; 92 %). Reaction of (S)-[(eta5-C5H5)Re(NO)(PPh3)(CH2PPh2)] ((S)-2) and Pd(OAc)(2) (1.5 equiv; toluene, RT) affords the novel Pd3(OAc)4-based palladacycle (S,S)-[(eta5-C5H4)Re(NO)(PPh3)(mu-CH2PPh2)Pd(mu-OAc)2Pd(mu-OAc)2Pd(mu-PPh2CH2)(Ph3P)(ON)Re(eta5-C5H4)] ((S,S)-13; 71-90 %). Addition of LiCl and LiBr yields (S,S)-10 a,b (73 %), and Na(acac-F6) gives (S)-[(eta5-C5H4)Re(NO)(PPh3)(mu-CH2PPh2)Pd(acac-F6)] ((S)-16, 72 %). Reaction of (S,S)-10 b and pyridine affords (S)-[(eta5-C5H4)Re(NO)(PPh3)(mu-CH2PPh2)Pd(NC5H5)(Br)] ((S)-17 b, 72 %); other Lewis bases yield similar adducts. Reaction of (S)-2 and Pd(OAc)2 (0.5 equiv; benzene, 80 degrees C) gives the spiropalladacycle trans-(S,S)-[{(eta5-C5H4)Re(NO)(PPh3)(mu-CH2PPh2)}2Pd] (39 %). The crystal structures of (S)-6 c, 11 b, (S,S)- and (R,R)-132 C7H8, (S,S)-10 b, and (S)-17 b aid the preceding assignments. Both 10 b (racemic or S,S) and (S)-16 are excellent catalyst precursors for Suzuki and Heck couplings.  相似文献   

4.
The reactivity of isolobal molybdenum carbonylmetalates containing a 2-boratanaphthalene, [Mo(eta5-2,4-MeC9H6BMe)(CO)3]- (5a) and [Mo(eta5-2,4-MeC9H6BNi-Pr2)(CO)3]- (5b), a 1-boratabenzene, [Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3]- (8), or a functionalized cyclopentadienyl ligand, the new metalate [Mo(eta5-C5H4Ph)(CO)3]- (7) and [Mo(eta5-C5H4NMe2)(CO)3]- (9), toward palladium (I and II) or platinum (I and II) complexes, such as trans-[PdCl2(NCPh)2], [Pd2(NCMe)6](BF4)2, trans-[PtCl2(PEt3)2], and [N(n-Bu)4]2 [Pt2Cl4(CO)2], has been investigated, and this has allowed an evaluation of the influence of the pi-bonded ligands on the structures and unprecedented coordination modes observed in the resulting metal-metal-bonded heterometallic clusters. The new 58 CVE planar-triangulated centrosymmetric clusters, [Mo2Pd2(eta5-C5H4Ph)2(CO)6(PEt3)2] (11), [Mo2Pd2(eta5-2,4-MeC9H6BNi-Pr2)2(CO)6] (12), [Mo(2)Pd(2)(eta5-3,5-Me2C5H3BNi-Pr2)2(CO)6] (13), [Mo2Pd2(eta5-C5H4NMe2)2(CO)6(PEt3)2] (15), [Mo2Pt2(eta5-C5H4NMe2)2(CO)6(PEt3)2] (16), and [Mo2Pt2(eta5-C5H4NMe2)2(CO)8] (20), have been characterized by single-crystal X-ray diffraction. Their structural features were compared with those of the 54 CVE cluster [Re2Pd2(eta5-C4H4BPh)2(CO)6)] (4), previously obtained from the borole-containing metalate [Re(eta5-C4H4BPh)(CO)3]- (2), in which a 2e-3c B-C(ipso)-Pd interaction involving the pi-ring was observed. As an extension of what has been observed in 4, clusters 12 and 13 present a direct interaction of the boratanaphthalene (12) and the boratabenzene (13) ligands with palladium. In clusters 11, 15, 16, and 20, the pi-ring does not interact with the palladium (11 and 15) or platinum centers (16 and 20), which confers to these clusters a geometry very similar to that of [Mo2Pd2(eta5-C5H5)2(CO)6(PEt3)2] (3b). The carbonylmetalates [Mo(pi-ring)(CO)3]- are thus best viewed as formal four electron donors which bridge a dinuclear d9-d9 unit. The orientation of this building block in the clusters influences the shape of their metal cores and the bonding mode of the bridging carbonyl ligands. The crystal structure of new centrosymmetric complex [Mo(eta5-C5H4Ph)(CO)3]2 (10) was determined, and it revealed intramolecular contacts of 2.773(4) A between the carbon atoms of carbonyl groups across the metal-metal bond and intermolecular bifurcated interactions between the carbonyl oxygen atoms (2.938(4) and 3.029(4) A), as well as intermolecular C-H...pi(Ar)(C=C) interactions (2.334(3) and 2.786(4) A) involving the phenyl substituents.  相似文献   

5.
Pathways for the reaction of ethene with diazomethane to cyclopropane and dinitrogen catalyzed by Pd(0) complexes have been investigated at the B3LYP level of theory. The computed Gibbs free activation energy of 71.7 kJ mol(-1) for the most favorable catalytic cycle is by far lower than previously reported computed barriers for Pd(II)-catalyzed pathways of this reaction and is now in the range of experimental expectations. Pd(eta(2)-C(2)H(4))(2) is predicted to be the resting state of the catalyst and the product of a Pd(OAc)(2) precatalyst reduction. The Pd(0) ethene complex is in equilibrium with Pd(eta(2)-C(2)H(4))(kappaC-CH(2)N(2)), from which N(2) is eliminated in the rate-determining step. The resulting carbene complex (eta(2)-C(2)H(4))Pd=CH(2) reacts without intrinsic barrier with CH(2)N(2) to Pd(eta(2)-C(2)H(4))(2) and N(2) and with ethene to the palladacyclobutane (eta(2)-C(2)H(4))Pd(II)[kappaC(1),kappaC(3)-(CH(2))(3)]. The N(2) elimination from Pd(eta(2)-C(2)H(4))(2)(kappaC-CH(2)N(2)) to (eta(2)-C(2)H(4))(2)Pd=CH(2) leads to an overall Gibbs free activation energy of 84.2 kJ mol(-1). The intramolecular rearrangement of (eta(2)-C(2)H(4))(2)Pd=CH(2) to the palladacyclobutane (eta(2)-C(2)H(4))Pd(II)[kappaC(1),kappaC(3)-(CH(2))(3)] and the subsequent reductive elimination of cyclopropane are facile. At the BP86 level of theory, Pd(0) preferentially coordinates three ligands. Pd(eta(2)-C(2)H(4))(3) is predicted to be the resting state, and the N(2) elimination from the model complex Pd(eta(2)-C(2)H(4))(2)(kappaC-CH(2)N(2)) is the rate-determining transition state leading to an overall Gibbs free activation energy of 69.4 kJ mol(-1).  相似文献   

6.
A series of nickel(II) and palladium(II) aryl complexes substituted in the ortho position of the aromatic ring by a (pinacolato)boronic ester group, [MBr[o-C(6)H(4)B(pin)]L(2)] (M = Ni, L(2) = 2PPh(3) (2a), 2PCy(3) (2b), 2PEt(3) (2c), dcpe (2d), dppe (2e), and dppb (2f); M = Pd, L(2) = 2PPh(3) (3a), 2PCy(3) (3b), and dcpe (3d)), has been prepared. Many of these complexes react readily with KO(t)Bu to form the corresponding benzyne complexes [M(eta(2)-C(6)H(4))L(2)] (M = Ni, L(2) = 2PPh(3) (4a), 2PCy(3) (4b), 2PEt(3) (4c), dcpe (4d); M = Pd, L(2) = 2PCy(3) (5b)). This reaction can be regarded as an intramolecular version of a Suzuki cross-coupling reaction, the driving force for which may be the steric interaction between the boronic ester group and the phosphine ligands present in the precursors 2 and 3. Complex 3d also reacts with KO(t)Bu, but in this case disproportionation of the initially formed eta(2)-C(6)H(4) complex (5d) leads to a 1:1 mixture of a novel dinuclear palladium(I) complex, [(dcpe)Pd(mu(2)-C(6)H(4))Pd(dcpe)] (6), and a 2,2'-biphenyldiyl complex, [Pd(2,2'-C(6)H(4)C(6)H(4))(dcpe)] (7d). Complexes 2a, 3b, 3d, 4b, 5b, 6, and 7d have been structurally characterized by X-ray diffraction; complex 5b is the first example of an isolated benzyne-palladium(0) species.  相似文献   

7.
Reactions of [(eta5-C5H5)Ru(PR'3)2(Cl)] with NaBAr(F) [BAr(F)-=B{3,5-[C6H3(CF3)2]}4-; PR'3=PEt3 or 1/2Et2PCH2CH2PEt2) (depe)] and PR2H (R=Ph, a; tBu, b; Cy, c) in C6H5F, or of related cationic Ru(N2) complexes with PR2H in C6H5F, gave the secondary phosphine complexes [(eta5-C5H5)Ru(PR'3)2(PR2H)]+ BAr(F)- (PR'3=PEt3, 3 a-c; 1/2depe, 4 a,b) in 65-91 % yields. Additions of tBuOK (3 a, 4 a; [D6]acetone) or NaN(SiMe3)2 (3 b,c, 4 b; [D8]THF) gave the title complexes [(eta5-C5H5)Ru(PEt3)2(PR2)] (5 a-c) and [(eta5-C5H5)Ru(depe)(PR2)] (6 a,b) in high spectroscopic yields. These complexes were rapidly oxidized in air; with 5 a, [(eta5-C5H5)Ru(PEt3)2{P(=O)Ph2}] was isolated (>99 %). The reaction of 5 a and elemental selenium yielded [(eta5-C5H5)Ru(PEt3)2{P(=Se)Ph2}] (70 %); selenides from 5 c and 6 a were characterized in situ. Competitive deprotonation reactions showed that 5 a is more basic than the rhenium analog [(eta5-C5H5)Re(NO)(PPh3)(PPh2)], and that 6 b is more basic than PtBu3 and P(iPrNCH2CH2)3N. The latter is one of the most basic trivalent phosphorus compounds [pK(a)(acetonitrile) 33.6]. Complexes 5 a-c and 6 b are effective ligands for Pd(OAc)2-catalyzed Suzuki coupling reactions: 6 b gave a catalyst nearly as active as the benchmark organophosphine PtBu3; 5 a, with a less bulky and electron-rich PR2 moiety, gave a less active catalyst. The reaction of 5 a and [(eta3-C3H5)Pd(NCPh)2]+ BF4- gave the bridging phosphido complex [(eta5-C5H5)Ru(PEt3)2(PPh2)Pd(NCPh)(eta3-C3H5)]+ BAr(F)- in approximately 90 % purity. The crystal structure of 4 a is described, as well as substitution reactions of 3 b and 4 b.  相似文献   

8.
The novel bimetallic micro-diboranyl-oxycarbyne bridged platinum-tungsten complex [W{eta(1),micro-CO-B(NMe(2))-B(NMe(2))-(eta(5)-C(5)H(4))}(CO)(2){Pt(PPh(3))(2)}] (W-Pt) () has been synthesised by a two-step reaction, starting from the dilithiated half-sandwich compound Li[W(eta(5)-C(5)H(4)Li)(CO)(3)] () via the ansa-diboranyl-oxycarbyne tungsten complex [W{eta(1)-CO-B(NMe(2))B(NMe(2))(eta(5)-C(5)H(4))}(OC)(2)] () by use of stoichiometric amounts of B(2)(NMe(2))(2)Br(2) and [Pt(eta(2)-C(2)H(4))(PPh(3))(2)], respectively.  相似文献   

9.
The syntheses of the chloro complexes [Ru(eta5-C5R5)Cl(L)] (R = H, Me; L = phosphinoamine ligand) (1a-d) have been carried out by reaction of [(eta5-C5H5)RuCl(PPh3)2] or {(eta5-C5Me5)RuCl}4 with the corresponding phosphinoamine (R,R)-1,2-bis((diisopropylphosphino)amino)cyclohexane), R,R-dippach, or 1,2-bis(((diisopropylphosphino)amino)ethane), dippae. The chloride abstraction reactions from these compounds lead to different products depending on the starting chlorocomplex and the reaction conditions. Under argon atmosphere, chloride abstraction from [(eta5-C5Me5)RuCl(R,R-dippach)] with NaBAr'4 yields the compound [(eta5-C5Me5)Ru(kappa3P,P'-(R,R)-dippach)][BAr'4] (2b) which exhibits a three-membered ring Ru-N-P by a new coordination form of this phosphinoamine. However, under the same conditions the reaction starting from [(eta5-C5Me5)RuCl(dippae)] yields the unsaturated 16 electron complex [(eta5-C5Me5)Ru(dippae)][BAr'4] (2d). The bonding modes of R,R-dippach and dippae ligands have been analyzed by DFT calculations. The possibility of tridentate P,N,P-coordination of the phosphinoamide ligand to a fragment [(eta5-C5Me5)Ru]+ is always present, but only the presence of a cyclohexane unit in the ligand framework converts this bonding mode in a more favorable option than the usual P,P-coordination. Dinitrogen [(eta5-C5R5)Ru(N2)(L)][BAr'4] (3a-d) and dioxygen complexes [(eta5-C5H5)Ru(O2)(R,R-dippach)][BPh4] (4a) and [(eta5-C5Me5)Ru(O2)(L)][BPh4] (4b,d) have been prepared by chloride abstraction under dinitrogen or dioxygen atmosphere, respectively. The presence of 16 electron [(eta5-C5H5)Ru(R,R-dippach)]+ species in fluorobenzene solutions of the corresponding dinitrogen or dioxygen complexes in conjunction with the presence of [BAr'4]- gave in some cases a small fraction of [Ru(eta5-C5H5)(eta6-C6H5F)][BAr'4] (5a), which has been isolated and characterized by X-ray diffraction.  相似文献   

10.
Complex OsH{eta5-C5H4(CH2)2NMe2}(P(i)Pr3)2 (1) reacts with 1 equiv of trifluoromethanesulfonic acid (HOTf) and trifluoromethanesulfonic acid-d1 (DOTf) to produce the dihydride and hydride-deuteride complexes, [OsHE{eta5-C5H4(CH2)2NMe2}(P(i)Pr3)2]OTf (E = H (2), D (2-d1), respectively. Treatment of 2 and 2-d1 with a second equivalent of HOTf gives [OsHE{eta5-C5H4(CH2)2NHMe2}(P(i)Pr3)2][OTf]2 (E = H (3), D (3-d1) as a result of the protonation of the nitrogen atom. While the hydride and deuteride ligands of 2, 2-d1, 3, and 3-d1 do not undergo any H/D exchange process with the solvent, in acetone-d6, the NH proton of 3 and 3-d1 changes places with a deuterium atom of the solvent to yield [OsHE{eta5-C5H4(CH2)2NDMe2}(P(i)Pr3)2][OTf]2 (E = H (3-Nd1), D (3-d2)). Complex 3-Nd1 can also be obtained from the treatment of complex 2 with DOTf in dichloromethane. No exchange process between the hydride and the ND positions in 3-Nd1 or between the deuteride and NH positions in 3-d1 has been observed. Treatment of 3-Nd1 and 3-d1 with sodium methoxide results in a selective reaction of the base with the ammonium group to regenerate 2 and 2-d1, respectively. Complex 1 also reacts with methyl and methyl-d3 trifluoromethanesulfonate (CH3OTf and CD3OTf, respectively) to give [OsH{eta5-C5H4(CH2)2NMe2CE3}(P(i)Pr3)2]OTf (E = H (4), D (4-d3)) as a result of the addition of the CE3 (E = H, D) group to the nitrogen atom. Complex 4 has been characterized by an X-ray diffraction analysis. It reacts with a second molecule of CH3OTf or CD3OTf to produce [OsH{eta5-C5H4(CH2)2NMe3}{CH2CH(CH3)P(i)P2}(P(i)Pr3)[OTf]2 (5). Similarly, complex 4-d3 reacts with a second molecule of CH3OTf or CD3OTf to yield [OsH{eta5-C5H4(CH2)2NMe2CD3}{CH2CH(CH3)P(i)P2}(P(i)Pr3)[OTf]2 (5-d3). In acetonitrile, complex 5 evolves to an equilibrium mixture of the acetonitrile adducts [Os{eta5-C5H4(CH2)2NMe3}(NCCH3)(P(i)Pr3)2][OTf]2 (7) and [Os{eta5-C5H4(CH2)2NMe3}(NCCH3)2(P(i)Pr3)][OTf]2 (8). In methanol or methanol-d4, complex 4 is not stable and loses trimethylamine to give the vinylcyclopentadienyl derivatives [OsHE(eta5-C5H4CH=CH2)(P(i)Pr3)2]OTf (E = H (9), D (9-d1)) as a result of the protonation or deuteration of the metallic center and a subsequent Hofmann elimination. Protonation of 4 with HOTf gives the dihydride-trimethylammonium derivative [OsH2{eta5-C5H4(CH2)2NMe3}(P(i)Pr3)2][OTf]2 (10). Treatment of 9 with sodium methoxide produces OsH(eta5-C5H4CH=CH2)(P(i)Pr3)2 (11).  相似文献   

11.
Ammonolyses of mono(pentamethylcyclopentadienyl) titanium(IV) derivatives [Ti(eta5-C5Me5)X3] (X = NMe2, Me, Cl) have been carried out in solution to give polynuclear nitrido complexes. Reaction of the tris(dimethylamido) derivative [Ti(eta5-C5Me5)(NMe2)3] with excess of ammonia at 80-100 degrees C gives the cubane complex [[Ti(eta5-C5Me5)]4(mu3-N)4] (1). Treatment of the trimethyl derivative [Ti(eta5-C5Me5)Me3] with NH3 at room temperature leads to the trinuclear imido-nitrido complex [[Ti(eta/5-CsMes)(mu-NH)]3(mu3-N)] (2) via the intermediate [[Ti(eta5-C5Me5)Me]2(mu-NH)2] (3). The analogous reaction of [Ti(eta5-C5Me5)Me3] with 2,4,6-trimethylaniline (ArNH2) gives the dinuclear imido complex [[Ti(eta5-C5Me5)Me])2(mu-NAr)2] (4) which reacts with ammonia to afford [[Ti(eta5-C5Me5)(NH2)]2(mu-NAr)2] (5). Complex 2 has been used, by treatments with the tris(dimethylamido) derivatives [Ti(eta5-C5H5-nRn)(NMe2)3], as precursor of the cubane nitrido systems [[Ti4(eta5-C5Me5)3(eta5-C5H5-nRn)](mu3-N)4] [R = Me n = 5 (1), R = H n = 0 (6), R = SiMe3 n = 1 (7), R = Me n = 1 (8)] via dimethylamine elimination. Reaction of [Ti(eta5-C5Me5)Cl3] or [Ti(eta5-C5Me5)(NMe2)Cl2] with excess of ammonia at room temperature gives the dinuclear complex [[Ti2(eta5-C5Me5)2Cl3(NH3)](mu-N)] (9) where an intramolecular hydrogen bonding and a nonlineal nitrido ligand bridge the "Ti(eta5-C5Me5)Cl(NH3)" and "Ti(eta5-C5Me5)Cl2" moieties. The molecular structures of [[Ti(eta5-C5Me5)Me]2 (mu-NAr)2] (4) and [[Ti2(eta5-C5Me5)2Cl3(NH3)](mu-N)] (9) have been determined by X-ray crystallographic studies. Density functional theory calculations also have been conducted on complex 9 to confirm the existence of an intramolecular N-H...Cl hydrogen bond and to evaluate different aspects of its molecular disposition.  相似文献   

12.
Ring borylation of [Me4C2(eta5-C5H4)2CrCO] by B(C6F5)3 affords the zwitterionic complex {Me4(eta5-C5H4)(eta5-C4H3B(C6F5)3)}CrH(CO) (1), the first structurally characterized bent-metallocene complex of Cr(4+). This species decomposes thermally to the zwitterionic species {Me4(eta5-C5H4)(eta5-C4H3B(C6F5)3)}Cr (2) and the ionic species [Me4C2(eta5-C5H4)2CrCO][HB(C6F5)3] (3). The molecular structure of 2 is also described.  相似文献   

13.
The generation of polynuclear complexes with one, two, or four acetylenedithiolate bridging units via the isolation of eta2-alkyne complexes of acetylenedithiolate K[Tp'M(CO)(L)(C2S2)] (Tp'=hydrotris(3,5-dimethylpyrazolyl)borate, M=W, L=CO (K-3a), M=Mo, L=CNC6H3Me2 (K-3b)) is reported. The strong electronic cooperation of Ru and W in the heterobimetallic complexes [(eta5-C5H5)(PPh3)Ru(3a)] (4a) and [(eta5-C5H5)(Me2C6H3NC)Ru(3a)] (4b) has been elucidated by correlation of the NMR, IR, UV-vis, and EPR-spectroscopic properties of the redox couples 4a/4a+ and 4b/4b+ with results from density functional calculations. Treatment of M(II) (M=Ni, Pd, Pt) with K-3a and K-3b afforded the homoleptic bis complexes [M(3a)2] (M=Ni (5a), Pd (5b), Pt (5c)), and [M(3b)2] (M=Pd (6a) and Pt (6b)), in which the metalla-acetylendithiolates exclusively serve as S,S'-chelate ligands. The vibrational and electronic spectra as well as the cyclic voltammetry behavior of all the complexes are compared. The structural analogy of 5a/5b/5c and 6a/6b with dithiolene complexes is only partly reflected in the electronic structures. The very intense visible absorptions involve essential d orbital contributions of the central metal, while the redox activity is primarily attributed to the alkyne complex moiety. Accordingly, stoichiometric reduction of 5a/5b/5c yields paramagnetic complex anions with electron-rich alkyne complex moieties being indistinguishable in the IR time scale. K-3a forms with Cu(I) the octanuclear cluster [Cu(3a)]4 (7) exhibiting a Cu4(S2C2)4W4 core. The nonchelating bridging mode of the metalla-acetylenedithiolate 3a- in 7 is recognized by a high-field shift of the alkyne carbon atoms in the 13C NMR spectrum. X-ray diffraction studies of K[Tp'(CO)(Me3CNC)Mo(eta2-C2S2)] (K-3c), 4b, 6a, 6b, and 7 are included. Comparison of the molecular structures of K-3c and 7 on the one hand with 4b and 6a/6b on the other reveals that the small bend-back angles in the latter are a direct consequence of the chelate ring formation.  相似文献   

14.
Acylation of allylic esters (2) with acylsilanes (1) in the presence of a catalytic amount (5 mol %) of a palladium complex is reported. The reaction proceeds selectively to afford beta,gamma-unsaturated ketones (3) in high yields. [Pd(eta3-C6H5CH=CHCH2)(CF3COO)]2 (4a) showed the best catalytic activity. After the reaction, formation of CF3COOSiMe3 (5a) was confirmed by 29Si NMR measurement of the resulting reaction mixture, indicating the trimethylsilyl moiety effectively traps the CF3COO leaving group from 2. The leaving group of the allylic esters affects the reaction considerably: allylic trifluoroacetate gave the best result, while the corresponding acetates and trichloroacetates did not afford any acylation products at all. Stoichiometric reaction of 4a with 1 gave acylation product 3 with a formation of 5a and Pd(0), whereas no acylation reaction took place with the corresponding acetate complex [Pd(eta3-C6H5CH=CHCH2)(CH3COO)]2 (4b). A DFT calculation suggests that interaction of high-lying HOMO of 1 and low-lying LUMO of eta3-allylpalladium trifluoroacetate intermediate 4 would be indispensable in the catalytic cycle.  相似文献   

15.
Cyclopentadienyl (Cp) ligands in moderately strained [1]- and [2]ferrocenophanes [Fe{(eta5-C5H4)2(ERx)y}: Fe{(eta5-C5H4)2SiMe2} (1), Fe{(eta5-C5H4)CH2}2 (10)] and highly strained [2]ruthenocenophanes [Ru{(eta5-C5H4)CR2}2 {R = H (15), Me (16)}] are susceptible to partial substitution by P donors and form mixed-hapticity metallocycles-[M(L2){(eta5-C5H4)(ERx)y(eta1-C5H4)}]: [Fe(dppe){(eta5-C5H4)SiMe2(eta1-C5H4)}] (5), [Fe(dmpe){(eta5-C5H4)SiMe2(eta1-C5H4)}] (6), [Fe(dmpe){(eta5-C5H4)(CH2)2(eta1-C5H4)}] (11), [Ru(dmpe){(eta5-C5H4)(CH2)2(eta1-C5H4)}] (17), [Ru(dmpe){(eta5-C5H4)(CMe2)2(eta1-C5H4)}] (18), and [Ru(PMe3)2{(eta5-C5H4)(CH2)2(eta1-C5H4)}] (19)-through haptotropic reduction of one eta5-, pi-bound Cp to eta1, sigma-coordination. These reactions are strain-controlled, as highly ring-tilted [2]ruthenocenophanes 15 and 16 [tilt angles (alpha) approximately 29-31 degrees ] react without irradiation to form thermodynamically stable products, while moderately strained [n]ferrocenophanes 1 and 10 (alpha approximately 19-22 degrees ) require photoactivation. The iron-containing photoproducts 5 and 11 are metastable and thermally retroconvert to their strained precursors and free phosphines at 70 degrees C. In contrast, the unprecedented ring-opening polymerization (ROP) of the essentially ring-strain-free adduct 6 to afford poly(ferrocenyldimethylsilane) [Fe(eta5-C5H4)2SiMe2]n (Mw approximately 5000 Da) was initiated by the thermal liberation of small amounts of P donor. Unlike reactions with bidentate analogues, monodentate phosphines promoted photolytic ROP of ferrocenophanes 1 and 10. MALDI-TOF analysis suggested a cyclic structure for the soluble poly(ferrocenyldimethylsilane), 8-cyclic, produced from 1 in this manner. While the polymer likewise produced from 10 was insoluble, the initiation step in the ROP process was modeled by isolation of a tris(phosphine)-substituted ring-opened ferrocenophane [Fe(PMe3)3{(eta5-C5H4)(CH2)2(C5H5)}][OCH2CH3] (13[OCH2CH3]) generated by irradiation of 10 and PMe3 in a protic solvent (EtOH). Studies of the cation 13 revealed that the Fe center reacts with a Cp- anion with loss of the phosphines to form [Fe(eta5-C5H5){(eta5-C5H4)(CH2)2(C5H5)}] (14) under conditions identical to those of the ROP experiments, confirming the likelihood of "back-biting" reactions to yield cyclic structures or macrocondensation to produce longer chains.  相似文献   

16.
The synthesis and structural characterization of the hexafluorophosphate salts of the substituted bis-amido molecular complexes [Co(III)(eta5-C5H4CONHC4H3N2)2]+ (1), [Co(III)(eta5-C5H4CONHCH2C5H4N)2]+ (2), [Co(III)(eta5-C5H4CON(C5H4N)2)2]+ (3), and of the amido-carboxyl complexes [Co(III)(eta5-C5H4CON(C5H4N)2)(eta5-C5H4COOH)]+ (4), and [Co(III)(eta5-C5H4CONHC2N3(C5H4N)2)(eta5-C5H4COOH)]+ (5) are reported. The pyridyl and pyrazine substituted amido ligands on the sandwich cores have been chosen because they allow both coordination to metal centres and participation in hydrogen bonding. The hydrogen bonding interactions established by the family of complexes in the solid state has been investigated. The utilization of complex 5 for the preparation of the complex of complexes[Cd(NO3)2{Co(III)(eta5-C5H4CONHC2N3(C5H4N)(C5H4NH))(eta5-C5H4COOH)}2]6+ (6) is reported as a first example of the potential of the substituted mono-and bis-amides as ligands. The isolation and structural characterization of the carbonyl chloride cation [Co(III)(eta5-C5H4COCl)2]+ (7) as its tetrachloro cobaltate anion salt is also described.  相似文献   

17.
Interaction of PdCl(2)(MeCN)(2) with 2 equiv of (S(P))-(t)BuPhP(O)H (1H) followed by treatment with Et(3)N gave [Pd((1)(2)H)](2)(micro-Cl)(2) (2). Reaction of 2 with Na[S(2)CNEt(2)] or K[N(PPh(2)S)(2)] afforded Pd[(1)(2)H](S(2)CNEt(2)) (3) or Pd[(1)(2)H)[N(PPh(2)S)(2)] (4), respectively. Treatment of 3 with V(O)(acac)(2) (acac = acetylacetonate) and CuSO(4) in the presence of Et(3)N afforded bimetallic complexes V(O)[Pd(1)(2)(S(2)CNEt(2))](2) (5) or Cu[Pd(1)(2)(S(2)CNEt(2))](2) (6), respectively. X-ray crystallography established the S(P) configuration for the phosphinous acid ligands in 3 and 6, indicating that 1H binds to Pd(II) with retention of configuration at phosphorus. The geometry around Cu in 6 is approximately square planar with the average Cu-O distance of 1.915(3) A. Treatment of 2 with HBF(4) gave the BF(2)-capped compound [Pd((1)(2)BF(2))](2)(micro-Cl)(2) (7). The solid-state structure of 7 containing a PdP(2)O(2)B metallacycle has been determined. Chloride abstraction of 7 with AgBF(4) in acetone/water afforded the aqua compound [Pd((1)(2)BF(2))(H(2)O)(2)][BF(4)] (8) that reacted with [NH(4)](2)[WS(4)] to give [Pd((1)(2)BF(2))(2)](2)[micro-WS(4)] (9). The average Pd-S and W-S distances in 9 are 2.385(3) and 2.189(3) A, respectively. Treatment of [(eta(6)-p-cymene)RuCl(2)](2) with 1H afforded the phosphinous acid adduct (eta(6)-p-cymene)RuCl(2)(1H) (10). Reduction of [CpRuCl(2)](x)() (Cp = eta(5)-C(5)Me(5)) with Zn followed by treatment with 1H resulted in the formation of the Zn(II) phosphinate complex [(CpRu(eta(6)-C(6)H(5)))(t)BuPO(2))](2)(ZnCl(2))(2) (11) that contains a Zn(2)O(4)P(2) eight-membered ring.  相似文献   

18.
A comparative study of the reactivity of isolobal rhenium and molybdenum carbonylmetallates containing a borole, in [Re(eta5-C4H4BPh)(CO)3]- (2), a boratanaphthalene, in [Mo(eta5-2,4-MeC9H6BMe)(CO)3]- (4a) and [Mo(eta5-2,4-MeC9H6BNi-Pr2)(CO)3]- (4b), a boratabenzene, in [Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3]- (6) or a dimethylaminocyclopentadienyl ligand, in [Mo(eta5-C5H4NMe2)(CO)3]- (7), toward palladium(II), gold(I), mercury(II) and platinum(II) complexes has allowed an evaluation of the role of these pi-bonded ligands on the structures and unprecedented coordination modes observed in the resulting metal-metal bonded, heterometallic complexes. The new metallate 6 was reacted with [AuCl(PPh3)], and with 1 or 2 equiv. HgCl2, which afforded the new heterodinuclear complexes [Au{Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3}(PPh3)] (Mo-Au) (10) and [Hg{Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3}Cl] (Hg-Mo) (11) and the heterometallic chain complex [Hg{Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3}2] (Mo-Hg-Mo) (12), respectively. Reactions of the new metallate 7 with HgCl2, trans-[PtCl2(CNt-Bu)2] and trans-[PtCl2(NCPh)2] yielded the heterodinuclear complex [Hg{Mo(eta5-C5H4NMe2)(CO)3}Cl] (Mo-Hg) (15), the heterotrinuclear chain complexes trans-[Pt{Mo(eta5-C5H4NMe2)(CO)3}2(CNt-Bu)2] (Mo-Pt-Mo) (16) and trans-[Pt{Mo(eta5-C5H4NMe2)(CO)3}2(NCPh)2] (Mo-Pt-Mo) (17), the mononuclear complex [Mo(eta5-C5H4NMe2)(CO)3Cl] (18), the lozenge-type cluster [Mo2Pt2(eta5-C5H4NMe2)2(CO)8] (19) and the heterodinuclear complex [[upper bond 1 start]Pt{Mo(eta5-C5H4N[upper bond 1 end]Me2)(CO)3}(NCPh)Cl](Mo-Pt) (20), respectively. The complexes 11, 16, 17.2THF, 18 and 20 have been structurally characterized by X-ray diffraction and 20 differs from all other compounds in that the dimethylaminocyclopentadienyl ligand forms a bridge between the metals.  相似文献   

19.
The niobium phosphido complex [Nb(eta5-C5H4SiMe3)2-(CNXylyl)(PPh2)] (2) undergoes an unusual cycloaddition reaction with electron-deficient alkynes to give the novel five-membered heteroniobacycles [Nb(eta5-C5H4SiMe3)2(kappaC-C(=N(Xylyl))C(CO2Me)=C(R)PPh2-kappaP)] (R = H 3 and R = Me 4).  相似文献   

20.
Hydrozirconation of the eta 2-phosphaalkyne complex [Pt(dppe)(eta 2-tBuCP)] with [ZrHCl(eta 5-C5H5)2], followed by treatment with the chlorophosphaalkene ClP=C(SiMe3)2 affords the eta 2-2,3-diphosphabutadiene complex [Pt(dppe)(eta 2-tBuC(H)=PP=C(SiMe3)2]. In the presence of [Pt(PPh3)2] the latter undergoes an addition reaction with water to afford the structurally characterised Pt(II) complex [Pt(dppe)(tBuCH2P(O)HPC(SiMe3)2].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号