首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 793 毫秒
1.
Resol resins are used in many industrial applications as adhesives and coatings, but few studies have examined their thermal degradation. In this work, the thermal stability and thermal degradation kinetics of phenol–formaldehyde (PF) and lignin–phenol–formaldehyde (LPF) resol resins were studied using thermogravimetric analysis (TG) in air and nitrogen atmospheres in order to understand the steps of degradation and to improve their stabilities in industrial applications. The thermal stability of samples was estimated by measuring the degradation temperature (T d), which was calculated according to the maximum reaction rate criterion. In addition, the ash content was determined at 800 °C in order to compare the thermal stability of the resol resin samples. The results indicate that 30 wt% ammonium lignin sulfonate (lignin derivative) as filler in the formulation of LPF resin improves the thermal stability in comparison with PF commercial resin. The activation energies of degradation of two resol resins show a difference in dependence on mass loss, which allows these resins to be distinguished. In addition, the structural changes of both resins during thermal degradation were studied by Fourier transform infrared spectroscopy (FTIR), with the results indicating that PF resin collapses at 300 °C whereas the LPF resin collapses at 500 °C.  相似文献   

2.
Phosphorus‐containing novolac–epoxy systems were prepared from novolac resins and isobutyl bis(glycidylpropylether) phosphine oxide (IHPOGly) as crosslinking agent. Their curing behavior was studied and the thermal, thermomechanical, and flame‐retardant properties of the cured materials were measured. The Tg and decomposition temperatures of the resulting thermosets are moderate and decrease when the phosphorous content increases. Whereas the phosphorous species decrease the thermal stability, at higher temperatures the degradation rates are lower than the degradation rate of the phosphorous‐free resin. V‐O materials were obtained when the resins were tested for ignition resistance with the UL‐94 test. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3516–3526, 2004  相似文献   

3.
Photoelectrocatalytic degradation of various dyes under visible light irradiation with a TiO(2) nanoparticles electrode has been investigated to reveal the mechanism for TiO(2)-assisted photocatalytic degradation of dyes. The degradation of both cationic and anionic dyes at different biases, including the change in the degradation rate of the dyes and the photocurrent change with the bias potential, the degraded intermediates, the voltage-induced adsorption of dyes, the accumulation of electrons in the TiO(2) electrode, the effect of various additives such as benzoquinone (BQ) and N,N-dimethyl aniline (DMA), and the formation of active oxygen species such as O(2)(*-) and H(2)O(2) were examined by UV-visible spectroscopy, HPLC, TOC, and spin-trap ESR spectrometry. It was found that the dyes could controllably interact with the TiO(2) surface by external bias changes and charging of dyes. The cationic dyes such as RhB and MG underwent efficient mineralization at negative bias, but the N-dealkylation process predominated at positive bias under visible light irradiation. The discolorations of the anionic dyes SRB and AR could not be accelerated significantly at either negative or positive bias. At a negative bias of -0.6 V vs SCE, O(2)(*-) and dye(*+) were formed simultaneously at the electrode/electrolyte interface during degradation of cationic RhB. In the case of anionic dyes, however, it is impossible for the O(2)(*-) and dye cationic radical to coexist at the electrode/electrolyte surface. Experimental results imply both the superoxide anionic radical and the dye cationic radical are essential to the mineralization of the dyes under visible light-induced photocatalytic conditions.  相似文献   

4.
Modified novolac resins with benzoxazine rings were prepared and copolymerized with a glycidyl phosphinate. Their curing behavior and the thermal properties of the curing resins were studied. Copolymerization was studied with model compounds considering the functionality of the benzoxazine‐based phenolic resins and the easy isomerization of the glycidyl phosphinate. Phenolic novolac resin acts as an initiator but p‐toluensulfonic acid had to be used to decrease the curing temperature and to prevent glycidyl phosphinate from isomerizing. The materials obtained exhibited high glass‐transition temperatures and retardation on thermal degradation rates. V‐0 materials were obtained when the materials were tested for ignition resistance with the UL‐94 test. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 279–289, 2004  相似文献   

5.
A series of silicone resins containing silphenylene units were synthesized by a hydrolysis-polycondensation method, with methyltriethoxysilane, dimethyldiethoxysilane and 1,4-bis(ethoxydimethylsilyl)benzene. Their thermal degradation behaviours were studied by thermogravimetric analysis (TGA), differential thermogravimetry (DTG) and Fourier-transform infrared (FTIR) spectroscopy, and the effect of silphenylene units on the thermal stability of silicone resins was also investigated. Results showed that the thermal stability of silicone resins was improved by the introduction of silphenylene units into the backbone. Under nitrogen atmosphere, the temperature for maximum degradation rate of silicone resins with silphenylene units was lower compared to the pure methylsilicone resin. With the increase of silphenylene units, the amount of degradation residues increased under nitrogen atmosphere while it decreased under air atmosphere. Additionally, the short-term and long-term stability of silicone resins were also improved by the introduction of silphenylene units.  相似文献   

6.
The aim of this work was to study the effect of tris(3-nitrophenyl) phosphine (NPPh3), which showed a good thermal stability and carbon-forming ability, on the flame retardancy and thermal degradation mechanism of epoxy resins. A series of diglycidyl ether of bisphenol A (DGEBA) loaded with tris(3-nitrophenyl) phosphine (NPPh3) were prepared. It was found that NPPh3 can effectively improve the flame retardancy and thermal stability of the composites. When the loading amount of NPPh3 was 14%, the LOI value of the DGEBA composites was 29.2% (about 1.53 times the corresponding value of the original DGEBA resin). Thermal stability was studied by thermogravimetric analysis, and the results showed that the addition of NPPh3 can improve char formation of this system both in nitrogen and in air atmosphere. Specifically, its combustion residue at 800 °C in nitrogen atmosphere was about 4.26 times of the original resin. Differential scanning calorimetry indicated that NPPh3 slightly decreased the glass transition temperature of epoxy resins. Additionally, the gaseous degradation products were analyzed by thermogravimetric analysis/infrared spectrometry, providing insight into the thermal degradation mechanism. Scanning electron microscopy and Fourier transform infrared were brought together to evaluate the morphology and structure of the residual char obtained after combustion.  相似文献   

7.
Earlier equilibrium studies have established the thermal dependence of the equilibrium between salt solution and a mixed bed of weakly basic and weakly acidic ion-exchange resins. High resin utilization can be achieved if the resin properties and equilibrium conditions are optimized; the equilibrium characteristics of polyacrylic acid and polyvinylbenzyldiethylamine resins are quite suited for the practical desalination of brackish waters.

However, the adsorption rates exhibited by normal-sized resin beads of this type are much too slow for satisfactory operation of the process because of the low concentration of protons available for transfer between the resins. It is shown that increasing the porosity of the resins improves amine resin kinetics 10-fold and carboxylic acid resin kinetics 6-fold. Nevertheless such improvements are still inadequate for practical purposes, and it is concluded that for satisfactory rates to be achieved systems having much shorter diffusion paths are necessary.

Two further approaches to the rate problem are discussed, both involving the synthesis of novel resin systems. A mixed bed of microbeads (10-20 p) reacts at acceptable rates but presents mechanical problems; the magnetic flocculation of finely divided magnetic resins is reported as one possible solution to this problem. Another avenue is the synthesis of normal-sized beads of the amphoteric and snake-cage variety. Resins of this type that exchange at suitable rates are described.  相似文献   

8.
The catalytic activity and stability of anionic cobalt(II) porphyrin complexes: 5,10,15,20-tetrakis(2,6-dichloro-3-sulfonatophenyl)porphyrinatocobalt(II), 5,10,15,20-tetrakis(2,4,6-trimethyl-3,5disulfonatophenyl)porphyrinatocobalt(II) and the cationic cobalt(II) porphyrin: 5,10,15,20-tetrakis[4-(diethylmethylammonio)phenyl]porphyrinatocobalt(II) tertraiodide have been investigated in the oxidation of 2-mercaptoethanol by dioxygen. All complexes were efficient catalysts for the auto-oxidation of 2-mercaptoethanol. The cationic cobalt(II) porphyrin has been found to be the most reactive catalyst. The rate of auto-oxidation of 2-mercaptoethanol catalysed by 5,10,15,20-tetrakis(2,4,6-trimethyl-3,5disulfonatophenyl)porphyrinatocobalt(II) has been found to increase with increasing the pH from 7 to 9 then decreased at higher pH. The rate constants of auto-oxidation reaction showed linear dependence on catalyst concentration and saturation kinetics in both 2-mercaptoethanol concentrations and dioxygen pressure. Anionic cobalt(II) porphyrin complexes showed higher stability than the cationic catalyst in repeat oxidation reactions. Immobilizing the anionic catalysts on ion exchange resin and supporting the cationic catalyst on clay mineral montmorillonite improved their stabilities towards oxidation.  相似文献   

9.
Abstract

High-strength, readily processable, char-forming, insulative materials are being sought for application in ablative heat shields for re-entry vehicles. Toward this end, the family of epoxy resins has been evaluated. The structure of epoxy resins and curing agents in terms of their functionality, aromaticity, and chemical nature is discussed in relation to its effect on ablative properties. The concept of controlled, constructive thermal degradation is extremely important in ablative epoxide compositions. Bridged Diels-Alder adducts based upon cyclic dienes and maleic anhydride perform well as epoxy resin curing agents in this respect. The mechanism of thermal ablative degradation of these systems is discussed in terms of in situ thermal control and char-forming reactions. The position of attachment of glycidyl groups, as well as the nature and position of other sub-stituents around the aromatic nucleus, has little effect in general upon the ablative properties of epoxy resins. Thermal and ablative data of both benzene and naphthalene derivatives are given. A new epoxy resin based upon 2-nitro resorcinol has been synthesized. This resin gives significant char increases, both quantitatively and qualitatively, over conventional epoxides. The unusual mechanism of polymerization and thermal degradation of this resin is discussed.  相似文献   

10.
The effect of silicon source on the mechanism and efficiency of silicon–phosphorus synergism of flame retardation was studied. The studied systems composed of a phosphorus-containing epoxy resin and various types of silicon additives including nanoscale colloidal silica (CS), tetraethoxysilane (TEOS), and diglycidylether terminated polydimethylsiloxane (PDMS-DG). Thermal stability and degradation kinetics of cured epoxy resins, elemental analysis of degraded residues, and evolved gases analysis of degradation reactions were conducted with a thermogravimetric analyser, energy-dispersive X-ray spectrometry, and gas chromatography–mass spectrometry, respectively. Addition of silicon compounds showed significant effect on enhancing the thermal stability and char yields of the cured epoxy resins. During thermal degradation, TEOS and PDMS-DG exhibited silicon migration to sample surface and CS did not. Self-degradation of PDMS-DG resulted in a silicon loss for PDMS-DG-containing epoxy resin. From the results it was concluded that using TEOS as an additive for epoxy resins and formation of epoxy-silica hybrid structure through sol–gel reactions was a good approach for achieving phosphorus–silicon synergism in flame retardation.  相似文献   

11.
Thermosetting resin matrix is the key component of advanced wave-transparent composites,where low dielectric constant,excellent processability,high thermal stability,as well as good bonding ability are required for resins.Herein,we prepared a series of phenylethynyl terminated polyimide(PI)resins by grafting amine-functionalized hyperbranched polysiloxane(HBPSi)to PI chains during the in situ polymerization.The effects of HBPSi on the processability of oligomers,molecular packing,thermal stability,dielectric property and bonding ability to reinforce Kevlar fibers of the cured PI/HBPSi composite resins have been examined in detail.The dielectric constants of the cured composite resins were greatly reduced from 3.29 to 2.19 without compromising its processability and thermal stability.Meanwhile,the 10 wt%HBPSi-containing PI resin demonstrated better bonding ability to reinforce fibers with the interfacial shear strength(IFSS)of 37.64 MPa,compared with that of neat PI-6 matrix(27.34 MPa),and better adhesion to metal with the lap shear strength of 10.48 MPa,50%higher than that of neat resin PI-6(6.98 MPa).These resultant PI/HBPSi composite resins exhibit excellent comprehensive properties,indicating their great potential as low-dielectric constant resin matrix in radar radome.  相似文献   

12.
将Keggin型铬取代磷钨杂多阴离子PW11O39Cr(Ⅲ)(H2O)4-(PW11Cr)负载于弱碱性阴离子交换树脂D301R表面,制备了固体光催化剂PW11Cr/D301R,并以模型污染物罗丹明B(RhB)的降解为探针评估了该催化剂的可见光催化活性,讨论了光催化反应机理,同时考察了催化剂剂量、溶液pH值和溶液中常见离子对RhB可见光催化降解反应的影响以及催化剂的稳定性。 实验结果表明,当PW11Cr/D301R的剂量为100 mg时,10 μmol/L RhB水溶液暴露在200 W金卤灯下进行照射,RhB完全降解所需的时间仅为30 min,比PW11Cr均相体系缩短了3倍;反应180 min总有机碳(TOC)去除率约为84%。 催化剂剂量、溶液pH值和溶液中存在的Cl-、SO2-4和PO3-4对RhB光催化降解反应的速率均有一定影响。 催化剂循环实验显示经循环使用7次后催化剂的活性几乎没有损失。  相似文献   

13.
A novel fluorinated epoxy resin, 1,1-bis(4-glycidylesterphenyl)-1-(3′-trifluoromethylphenyl)-2,2,2-trifluoroethane (BGTF), was synthesized through a four-step procedure, which was then cured with hexahydro-4-methylphthalic anhydride (HMPA) and 4,4′-diaminodiphenyl-methane (DDM). As comparison, a commercial available epoxy resin, bisphenol A diglycidyl ether (BADGE), cured with the same curing agents was also investigated. We found that the BGTF gave the exothermic starting temperature lower than BADGE no mater what kind of curing agents applied, implying the reactivity of the former is higher than the latter. The fully cured fluorinated BGTF epoxy resins have good thermal stability with glass transition temperature of 170-175 °C and thermal decomposition temperature at 5% weight loss of 370-382 °C in nitrogen. The fluorinated BGTF epoxy resins also showed the mechanical properties as good as the commercial BADGE epoxy resins. The cured BGTF epoxy resins exhibited improved dielectric properties as compared with the BADGE epoxy resins with the dielectric constants and the dissipation factors lower than 3.3 and dissipation 2.8 × 10−3, respectively, which is related to the low polarizability of the C-F bond and the large free volume of CF3 groups in the polymer. The BGTF epoxy resins also gave low water absorption because of the existence of hydrophobic fluorine atom.  相似文献   

14.
The kinetics of thermal oxidative degradation of a compound based on a polyester resin and dimethylethylphenylammonium iodide was studied. The rate constants of thermal decomposition were determined. The degradation of the compound was studied by dynamic thermogravimetric analysis.  相似文献   

15.
Detergent sequestration using micelles as a hydrophobic sink for dissociated drug molecules is an established technique for determination of dissociation rates. The anionic surfactant molecules are generally assumed not to interact with the anionic DNA and thereby not to affect the rate of dissociation. By contrast, we here demonstrate that the surfactant molecules sodium dodecyl sulfate (SDS), sodium decyl sulfate, and sodium octyl sulfate all induce substantial rate enhancements of the dissociation of intercalators from DNA. Four different cationic DNA intercalators are studied with respect to surfactant-induced dissociation. Except for the smallest intercalator, ethidium, the dissociation rate constants increase monotonically with surfactant concentration both below cmc and (more strongly) above cmc, much more than expected from electrostatic effects of increased counterion concentration. The rate enhancement, most pronounced for the bulky, multicationic, hydrophobic DNA ligands in this study, indicates a reduction of the activation energy for the ligand to pass out from a deeply penetrating intercalation site of DNA. The discovery that surfactants enhance the rate of dissociation of cationic DNA-intercalators implies that rate constants previously determined by micelle-sequestered dissociation may have been overestimated. As an alternative, more reliable method, we suggest instead the addition of excess of dummy DNA as an absorbent for dissociated ligand.  相似文献   

16.
The effect of various counter-ions has been investigated in the cationic polymerisation of styrene in 1,2-dichloroethane at different temperatures (238 K, 253 K). The soluble silver salts of the corresponding acids HBF4, HClO4, HPF6, HAsF6, and HSbF6 were added to the reaction medium before initiation by perchlorid acid. Monomer consumption is seen to be incomplete under these circumstances. Initial polymerisation rates and the final degree of monomer conversion rise with decreasing nucleophilicity of the counter-ions.A kinetic scheme is proposed which is able to describe the course of polymerisation and gives the approximate values of the rate constants for propagation, termination and chain transfer reactions, respectively. The information obtained from GPC-measurements on the polymeric products supports the view that chain propagation takes place by at least two different forms of active species, the ratio of which is strongly determined by the nature of the added silver salt.
  相似文献   

17.
The kinetics of thermal oxidative degradation of a polyester resin and of its formulation with diethyldibenzylammonium bromide was studied. The rate constants of the thermal decomposition were determined.  相似文献   

18.
Theuse of adsorption columns packed with ion-exchange resins for recovering, concentrating and purifying proteins is now widespread. The present work consists of a study on the dyamic behavior ofadsorption columns that uses two kinds of adsorbents: a cationic and an anionic resin. A frontal analysis of the columns was performed with experimental data obtained from Fructozyme, a mixture of inulinase en zymes. The parameters of a Langmuir type of isotherm and adsorption kinetics were obtained from experimental tests in a batch system. A numerical technique based on orthogonal colocation and a fourth-order Runge-Kutta method was coupled with a nonlinear optimization method to predict the coefficients of the rate equations, which are fundamental for scale-up purposes.  相似文献   

19.
Thermal properties and degree of conversion (DC%) of two composite resins (microhybrid and nanocomposite) and two photo-activation methods (continuous and gradual) displayed by the light-emitting diode (LED) light-curing units (LCUs) were investigated in this study. Differential scanning calorimetry (DSC) thermal analysis technique was used to investigate the glass transition temperature (T g) and degradation temperature. The DC% was determined by Fourier transform infrared spectroscopy (FT-IR). The results showed that the microhybrid composite resin presented the highest T g and degradation temperature values, i.e., the best thermal stability. Gradual photo-activation methods showed higher or similar T g and degradation temperature values when compared to continuous method. The Elipar Freelight 2TM LCU showed the lowest T g values. With respect to the DC%, the photo-activation method did not influence the final conversion of composite resins. However, Elipar Freelight 2TM LCU and microhybrid resin showed the lowest DC% values. Thus, the presented results suggest that gradual method photo-activation with LED LCUs provides adequate degree of conversion without promoting changes in the polymer chain of composite resins. However, the thermal properties and final conversion of composite resins can be influenced by the kind of composite resin and LCU.  相似文献   

20.
Hyperbranched polyphosphate ester (HPPE) and phenolic melamine (PM) were blended in different ratios with a commercial epoxy resin to obtain a series of flame retardant resins. The thermal decomposition mechanism of their cured products in air was studied by thermogravimetric analysis and in situ Fourier-transform infrared spectroscopy. The degradation behaviours of epoxy resins containing various flame retardant components were found to be greatly changed. The incorporation of phosphorus and nitrogen compounds improved the thermal stability at elevated temperature. The kinetics of thermal decomposition was evaluated by Kissinger method, Flynn-Wall-Ozawa method and Horowitz-Metzger method. The results showed that the activation energy at lower degree of the degradation decreased by the incorporation of flame retardant components, while increased at higher degree of the degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号