首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Glycosidases are key enzymes in metabolism, pathogenic/antipathogenic mechanisms and normal cellular functions. Recently, a novel approach for glycosidase inhibition that conveys multivalent glycomimetic conjugates has emerged. Many questions regarding the mechanism(s) of multivalent enzyme inhibition remain unanswered. Herein we report the synthesis of a collection of novel homo‐ and heterovalent glyco(mimetic)‐fullerenes purposely conceived for probing the contribution of non‐catalytic pockets in glysosidases to the multivalent inhibitory effect. Their affinities towards selected glycosidases were compared with data from homovalent fullerene conjugates. An original competitive glycosidase–lectin binding assay demonstrated that the multivalent derivatives and the substrate compete for low affinity non‐glycone binding sites of the enzyme, leading to inhibition by a “recognition and blockage” mechanism. Most notably, this work provides evidence for enzyme inhibition by multivalent glycosystems, which will likely have a strong impact in the glycosciences given the utmost relevance of multivalency in Nature.  相似文献   

2.
Concerted functioning of lectins and carbohydrate‐processing enzymes, mainly glycosidases, is essential in maintaining life. It was commonly assumed that the mechanisms by which each class of protein recognizes their cognate sugar partners are intrinsically different: multivalency is a characteristic feature of carbohydrate–lectin interactions, whereas glycosidases bind to their substrates or substrate‐analogue inhibitors in monovalent form. Recent observations on the glycosidase inhibitory potential of multivalent glycomimetics have questioned this paradigm and led to postulate an inhibitory multivalent effect. Here the mechanisms at the origin of this phenomenon have been investigated. A D ‐gluco‐configured sp2‐iminosugar glycomimetic motif, namely 1‐amino‐5N,6O‐oxomethylydenenojirimycin (1N‐ONJ), behaving, simultaneously, as a ligand of peanut agglutinin (PNA) lectin and as an inhibitor of several glycosidases, has been identified. Both the 1N‐ONJ–lectin‐ and 1N‐ONJ–glycosidase‐recognition processes have been found to be sensitive to multivalency, which has been exploited in the design of a lectin–glycosidase competitive assay to explore the implication of catalytic and non‐glycone sites in enzyme binding. A set of isotropic dodecavalent C60‐fullerene–sp2‐iminosugar balls incorporating matching or mismatching motifs towards several glycosidases (inhitopes) was synthesized for that purpose, thereby preventing differences in binding modes arising from orientational preferences. The data supports that: 1) multivalency allows modulating the affinity and selectivity of a given inhitope towards glycosidases; 2) multivalent presentation can switch on the inhibitory capacity for some inhitope–glycosidase pairs, and 3) interactions of the multivalent inhibitors with non‐glycone sites is critical for glycosidase recognition. The ensemble of results point to a shift in the binding mode on going from monovalent to multivalent systems: in the first case a typical ′′key–lock′′ model involving, essentially, the high‐affinity active site can be assumed, whereas in the second, a lectin‐like behavior implying low‐affinity non‐glycone sites probably operates. The differences in responsiveness to multivalency for different glycosidases can then be rationalized in terms of the structure and accessibility of the corresponding carbohydrate‐binding regions.  相似文献   

3.
Glycosidases are ubiquitous enzymes involved in a diversity of key biological processes such as energy uptake or cell wall degradation. The design of specific glycosidase inhibitors has been therefore the subject of intense research efforts in academia and pharmaceutical industry. However, until recently, the study of the impact of multivalency on glycosidase inhibition was almost completely neglected. The following account will review our ten year journey on the design of multivalent glycomimetics within our research group, from the discovery of the first strong multivalent effect in glycosidase inhibition to the high‐resolution crystal structures of Jack bean α‐mannosidase in complex with the multimeric inhibitor displaying the largest binding enhancements reported so far.  相似文献   

4.
Multivalent design of glycosidase inhibitors is a promising strategy for the treatment of diseases involving enzymatic hydrolysis of glycosidic bonds in carbohydrates. An essential prerequisite for successful applications is the atomic‐level understanding of how outstanding binding enhancement occurs with multivalent inhibitors. Herein we report the first high‐resolution crystal structures of the Jack bean α‐mannosidase (JBα‐man) in apo and inhibited states. The three‐dimensional structure of JBα‐man in complex with the multimeric cyclopeptoid‐based inhibitor displaying the largest binding enhancements reported so far provides decisive insight into the molecular mechanisms underlying multivalent effects in glycosidase inhibition.  相似文献   

5.
A series of cyclopeptoid‐based iminosugar clusters has been evaluated to finely probe the ligand content‐dependent increase in α‐mannosidase inhibition. This study led to the largest binding enhancement ever reported for an enzyme inhibitor (up to 4700‐fold on a valency‐corrected basis), which represents a substantial advance over the multivalent glycosidase inhibitors previously reported. Electron microscopy imaging and analytical data support, for the best multivalent effects, the formation of a strong chelate complex in which two mannosidase molecules are cross‐linked by one inhibitor.  相似文献   

6.
Tetrachlorinated phthalimide analogues bearing a boron-pinacolate ester group were synthesised via two synthetic routes and evaluated in their glycosidase modulating and anticancer properties, with a view to use them in boron neutron capture therapy (BNCT), a promising radiation type for cancer, as this therapy does little damage to biological tissue. An unexpected decarbonylation/decarboxylation to five 2,3,4,5-tetrachlorobenzamides was observed and confirmed by X-ray crystallography studies, thus, giving access to a family of borylated 2,3,4,5-tetrachlorobenzamides. Biological evaluation showed the benzamide drugs to possess good to weak potencies (74.7–870 μM) in the inhibition of glycosidases, and to have good to moderate selectivity in the inhibition of a panel of 18 glycosidases. Furthermore, in the inhibition of selected glycosidases, there is a core subset of three animal glycosidases, which is always inhibited (rat intestinal maltase α-glucosidase, bovine liver β-glucosidase and β-galactosidase). This could indicate the involvement of the boron atom in the binding. These glycosidases are targeted for the management of diabetes, viral infections (via a broad-spectrum approach) and lysosomal storage disorders. Assays against cancer cell lines revealed potency in growth inhibition for three molecules, and selectivity for one of these molecules, with the growth of the normal cell line MCF10A not being affected by this compound. One of these molecules showed both potency and selectivity; thus, it is a candidate for further study in this area. This paper provides numerous novel aspects, including expedited access to borylated 2,3,4,5-tetrachlorophthalimides and to 2,3,4,5-tetrachlorobenzamides. The latter constitutes a novel family of glycosidase modulating drugs. Furthermore, a greener synthetic access to such structures is described.  相似文献   

7.
Multivalency is a powerful concept which explains the strong binding observed in biological systems and guides the design and synthesis of ligands for self-assembly and molecular recognition in Chemistry. The phenol-formaldehyde cyclic oligomers, called calixarenes, have been used as scaffolds for the synthesis of multivalent ligands thanks to the fact that they have a variable number of reactive positions for attaching the ligating functions, well defined conformational properties and, in some cases, cavities of molecular dimensions eventually able to encapsulate guest species. This tutorial review illustrates the fundamental aspects of multivalency and the properties of calixarene-based multivalent ligands in lectin binding and inhibition, DNA condensation and cell transfection, protein surface recognition, self-assembly, crystal engineering, and nanofabrication.  相似文献   

8.
New and rigid multivalent lactose molecules were prepared. The structures contain lactose-2-aminothiazoline units at the periphery that were formed from a cyclisation of the thiourea sulphur onto the triple bond of the spacer. The lactosides were evaluated as inhibitors against lectin binding in a solid phase inhibition assay. In this assay the glycoprotein asialofetuin was immobilized onto the surface of microtiter plate wells, mimicking cell surface presentation, while mammalian galectins-1, -3 or -5 were in solution. Between the three galectins, the folding pattern and sequence are closely related but the topology of presentation of the carbohydrate recognition domains differs. Strong multivalency effects were observed for the tetravalent lactoside in the inhibition of galectin-3 binding with enhancements of almost 4300-fold compared to lactose. Remarkable selectivity was obtained in the inhibition since relative potencies of the tetravalent lactoside with the proto type galectins-1 and -5 did not exceed a factor of 143 relative to lactose. The binding of the lactosides to galectin-3 was also studied by fluorescence spectroscopy with all components in solution. These studies showed no multivalency effects in the inherent binding affinities.  相似文献   

9.
Multifunctional silica nanoparticles decorated with fluorescent and sulfonamide carbonic anhydrase (CA) inhibitors were prepared and investigated as multivalent enzyme inhibitors against the cytosolic isoforms hCA I and II and the transmembrane tumor‐associated ones hCA IX and XII. Excellent inhibitory effects were observed with these nanoparticles, with KI values in the low nanomolar range (6.2–0.67 nM ) against all tested isozymes. A significant multivalency effect was seen for the inhibition of the monomeric enzymes hCA I and II compared to the dimeric hCA IX and hCA XII isoforms, where no multivalent effect was observed, suggesting that the multivalent binding is occurring through enzyme clustering.  相似文献   

10.
Multivalency is a powerful and versatile self-assembly pathway that confers unique thermodynamic and kinetic behavior onto supramolecular complexes. The diversity of the examples of supramolecular multivalent systems discussed in this perspective shows that the concept of multivalency is a general phenomenon, and that any supramolecular interaction can be employed in multivalent displays to attain the attractive aspects characteristic of multivalent interactions. After a general introduction reviewing the general aspects of multivalency, a number of different supramolecular multivalent complexes are discussed that highlight the different features of multivalent interactions. In contrast to the many biochemical multivalent interactions, supramolecular multivalent interactions are ideal to attain a quantitative and fundamental understanding of multivalency. Several examples in which multivalency has been utilized in supramolecular nanofabrication schemes are described in detail.  相似文献   

11.
The effect of ligand multivalency and nanoparticle size on the binding kinetics of thiol ligands on gold nanoparticles is investigated by exchanging monovalently bound pyrene on gold nanoparticles against flexible mono- and multivalent thiol ligands. Variable-sized gold nanoparticles of 2.2 ± 0.4, 3.2 ± 0.7, and 4.4 ± 0.9 nm diameter are used as substrates. The particles are coated by thiol functionalized pyrene ligands and the binding kinetics of the thiol ligands is studied by time-resolved fluorescence spectroscopy. The effect of multivalency on the binding kinetics is evaluated by comparing the rate constants of ligands of different valency. This comparison reveals that the multivalent ligands are exchanging substantially more rapidly than the monovalent ones. A particle size dependence of the rate constants is also observed, which is used to derive structural information on the binding of the mono- and multivalent ligands to the nanoparticle surface.  相似文献   

12.
The design of multivalent glycoconjugates has been developed over the past decades to obtain high-affinity ligands for lectin receptors. While multivalency frequently increases the affinity of a ligand for its lectin through the so-called "glycoside cluster effect", the binding profiles towards different lectins have been much less investigated. We have designed a series of multivalent galactosylated glycoconjugates and studied their binding properties towards two lectins, from plant and bacterial origins, to determine their potential selectivity. The synthesis was achieved through copper(I)-catalysed azide-alkyne cycloaddition (CuAAC) under microwave activation between propargylated multivalent scaffolds and an azido-functionalised carbohydrate derivative. The interactions of two galactose-binding lectins from Pseudomonas aeruginosa (PA-IL) and Erythrina cristagalli (ECA) with the synthesized glycoclusters were studied by hemagglutination inhibition assays (HIA), surface plasmon resonance (SPR) and isothermal titration microcalorimetry (ITC). The results obtained illustrate the influence of the scaffold's geometry on the affinity towards the lectin and also on the relative potency in comparison with a monovalent galactoside reference probe.  相似文献   

13.
This tutorial review describes the development of molecular printboards, which are tailor-made surfaces functionalized with receptor (host) molecules. Such substrates can be used for the binding of complementary ligand (guest) molecules through multivalent interactions. Supramolecular multivalent interactions are ideal to attain a quantitative and fundamental understanding of multivalency at interfaces. Because of their quantitative interpretation, the focus is on (i) the interaction of cyclodextrin host surfaces with multivalent hydrophobic guest molecules, (ii) the vancomycin-oligopeptide system, and (iii) the multivalent binding of histidine-tagged proteins to NiNTA receptor surfaces. The review will be of interest to researchers in the fields of supramolecular chemistry, chemical biology, surface chemistry, and molecular recognition.  相似文献   

14.
A quantitative model is proposed for the analysis of the thermodynamic parameters of multivalent interactions in dilute solutions or with immobilized multimeric receptor. The model takes into account all bound species and describes multivalent binding via two microscopic binding energies corresponding to inter- and intramolecular interactions (Delta G(o)inter and Delta G(o)intra), the relative contributions of which depend on the distribution of complexes with different numbers of occupied binding sites. The third component of the overall free energy, which we call the "avidity entropy" term, is a function of the degeneracy of bound states, Omega(i), which is calculated on the basis of the topology of interaction and the distribution of all bound species. This term grows rapidly with the number of receptor sites and ligand multivalency, it always favors binding, and explains why multivalency can overcome the loss of conformational entropy when ligands displayed at the ends of long tethers are bound. The microscopic parameters and may be determined from the observed binding energies for a set of oligovalent ligands by nonlinear fitting with the theoretical model. Here binding data obtained from two series of oligovalent carbohydrate inhibitors for Shiga-like toxins were used to verify the theory. The decavalent and octavalent inhibitors exhibit subnanomolar activity and are the most active soluble inhibitors yet seen that block Shiga-like toxin binding to its native receptor. The theory developed here in conjunction with our protocol for the optimization of tether length provides a predictive approach to design and maximize the avidity of multivalent ligands.  相似文献   

15.
High‐mannose‐type glycans (HMTGs) decorating viral spike proteins are targets for virus neutralization. For carbohydrate‐binding proteins, multivalency is important for high avidity binding and potent inhibition. To define the chemical determinants controlling multivalent interactions we designed glycopeptide HMTG mimetics with systematically varied mannose valency and spacing. Using the potent antiviral lectin griffithsin (GRFT) as a model, we identified by NMR spectroscopy, SPR, analytical ultracentrifugation, and microcalorimetry glycopeptides that fully recapitulate the specificity and kinetics of binding to Man9GlcNAc2Asn and a synthetic nonamannoside. We find that mannose spacing and valency dictate whether glycopeptides engage GRFT in a face‐to‐face or an intermolecular binding mode. Surprisingly, although face‐to‐face interactions are of higher affinity, intermolecular interactions are longer lived. These findings yield key insights into mechanisms involved in glycan‐mediated viral inhibition.  相似文献   

16.
A cellobio-derived isofagomine glycosidase inhibitor (Ki approximately 400 nM) displays an unusual distorted 2,5B (boat) conformation upon binding to cellobiohydrolase Cel6A from Humicola insolens, highlighting the different conformational itineraries used by various glycosidases, with consequences for the design of therapeutic agents.  相似文献   

17.
Multivalent surface display of biomolecules is crucial to study and utilize multivalent biological interactions. However, precise valency control of surface‐displayed ligands remains extremely difficult. Now a series of new oligomeric avidin proteins were fabricated that allow facile control of surface multivalency of biotinylated ligands. Naturally dimeric rhizavidin (RA) was engineered to form a mixture of oligomeric avidin assemblies, and discrete RA oligomers from the dimer to octamer of RA, were homogeneously prepared. These oligomeric avidins are in polygonal forms with expected numbers of stable biotin binding sites. Upon immobilization on low‐density biotin‐coated gold surfaces, RA dimer, trimer, and tetramer scaffolds provided accurate mean residual valencies of 2, 3, and 4, respectively, for biotinylated proteins. Valency‐controlled display of antibody binding protein G on these RA surfaces showed clear valency‐dependent enhancement of antibody capturing stability.  相似文献   

18.
A model has been described for interpreting the binding of multivalent molecules to interface-immobilized monovalent receptors through multiple, independent interactions. It is based on the concept of effective concentration, C(eff), which has been developed before for multivalent binding in solution and which incorporates effects of lengths and flexibilities of linkers between interacting sites. The model assumes: (i). the interactions are independent, (ii). the maximum number of interactions, p(max), is known, (iii). C(eff) is estimated from (simple) molecular models. Simulations of the thermodynamics and kinetics of multivalent host-guest binding to interfaces have been discussed, and competition with a monovalent competitor in solution has been incorporated as well. The model was successfully used to describe the binding of a divalent guest to self-assembled monolayers of a cyclodextrin host. The adsorption data of more complex guest-functionalized dendrimers, for which p(max) was not known beforehand, was interpreted as well. Finally, it has been shown that the model can aid to deconvolute contributions of multivalency and cooperativity to stability enhancements observed for the adsorption of multivalent molecules to interfaces.  相似文献   

19.
Dendrimer-based anticancer nanotherapeutics containing approximately 5 folate molecules have shown in vitro and in vivo efficacy in cancer cell targeting. Multivalent interactions have been inferred from observed targeting efficacy, but have not been experimentally proven. This study provides quantitative and systematic evidence for multivalent interactions between these nanodevices and folate-binding protein (FBP). A series of the nanodevices were synthesized by conjugation with different amounts of folate. Dissociation constants (K(D)) between the nanodevices and FBP measured by SPR are dramatically enhanced through multivalency ( approximately 2,500- to 170,000-fold). Qualitative evidence is also provided for a multivalent targeting effect to KB cells using flow cytometry. These data support the hypothesis that multivalent enhancement of K(D), not an enhanced rate of endocytosis, is the key factor resulting in the improved biological targeting by these drug delivery platforms.  相似文献   

20.
Aminocyclopentitol analogs of beta-D-glucose, beta-D-galactose and alpha-D-galactose bearing alkyl substituents as aglycon mimics on the amine function were prepared and tested for inhibition of various glycosidases. N-benzyl-beta-D-gluco derivatives 1-4 and N-benzyl-beta-D-galacto derivative 5 inhibited beta-galactosidase and beta-glucosidase. N-benzyl-alpha-D-galacto aminocyclopentitol 6 strongly inhibited alpha-galactosidase. The inhibitory activities observed were generally stronger compared to those of their primary amine analogs. A structure-activity relationship analysis was carried out including data from thirty-five different aminocyclopentitol glycosidase inhibitors. The strongest inhibitions reported for any enzyme were associated with a perfect stereochemical match between aminocyclopentitol and glycosidase, including the alpha- or beta-configuration of the amino-group corresponding to the enzyme's anomeric selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号