首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Design and synthesis of biodegradable stimuli-responsive polypeptides are important areas considering their promising applications in biomedical fields. This article summarizes the most recent progresses in the development of stimuli-responsive polypeptide materials prepared via ring-opening polymerization of α-amino acid N-carboxyanhydrides. We discuss the design, synthesis and structure-property correlation of emerging materials including thermo-responsive, redox-responsive, photo-responsive and biomolecule responsive polypeptides. Considering the unique structural features of amino acids, we try to emphasize that the thermo-responsive properties not only depend on the amino acid structure but also rely on the secondary structures of polypeptides. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

2.
A series of novel biodegradable functional amino acid-based poly(amide-imide)s (PAI)s were designed and synthesized by the direct polycondensation reaction of chiral bioactive diacids composed of naturally occurring α-amino acids with 3,5-diamino-N-(pyridin-3-yl) benzamide in the presence of molten tetrabutylammonium bromide as a green solvent. These new biodegradable polymers were characterized with Fourier transfer infrared and 1H NMR spectroscopy, field emission scanning electron microscopy. In addition, in vitro toxicity and biodegradability behavior of the starting diacids, diamine and obtained PAIs were investigated in culture media and the results showed that the synthesized monomers and their derived polymers are biologically active and their degradation products are probably nontoxic to microbial growth.  相似文献   

3.
In the last decades, the solid-waste management related to the extensively growing production of plastic materials, in concert with their durability, have stimulated increasing interest in biodegradable polymers. At present, a variety of biodegradable polymers has already been introduced onto the market and can now be competitive with non biodegradable thermoplastics in different fields (packaging, biomedical, textile, etc.). However, a significant economical effort is still directed in tailoring structural properties in order to further broaden the range of applications without impairing biodegradation. Improving the performance of biodegradable materials requires a good characterization of both physico-chemical and mechanical parameters. Polymer analysis can involve many different features including detailed characterization of chemical structures and compositions as well as average molecular mass determination. It is of outstanding importance in troubleshooting of a polymer manufacturing process and for quality control, especially in biomedical applications. This review describes recent trends in the structural characterization of biodegradable materials by modern mass spectrometry (MS). It provides an overview of the analytical tools used to evaluate their degradation. Several successful applications of MALDI-TOF MS (matrix assisted laser desorption ionization time of flight) and ESI MS (electrospray mass spectrometry) for the determination of the structural architecture of biodegradable macromolecules, including their topology, composition, chemical structure of the end groups have been reported. However, MS methodologies have been recently applied to evaluate the biodegradation of polymeric materials. ESI MS represents the most useful technique for characterizing water-soluble polymers possessing different end group structures, with the advantage of being easily interfaced with solution-based separation techniques such as high-performance liquid chromatography (HPLC).  相似文献   

4.
新型富勒烯α-氨基酸的合成及其纳米颗粒水悬液的制备   总被引:1,自引:1,他引:0  
通过1,3-偶极环加成反应合成中间体N-取代的3,4-富勒烯吡咯烷, 利用α-氨基与α-羧基均被保护的天冬氨酸或谷氨酸的非α-羧基与中间体N-取代的3,4-富勒烯吡咯烷衍生物的活化羟基进行缩合反应, 产物脱保护后得到了2种新的α-富勒烯氨基酸: 富勒烯天冬氨酸和富勒烯谷氨酸. 采用MALDI-TOF质谱、红外光谱、紫外-可见光谱和1H NMR 等方法对它们进行了结构表征. 采用有机溶剂交换法, 制备富勒烯氨基酸纳米颗粒水悬液, 并进行了电镜和表面zeta-电位分析, 结果表明, 此水悬液体系稳定, 颗粒形态大小均一, 在生物医学领域中具有潜在的应用前景.  相似文献   

5.
The synthesis of α-amino acid L-leucine (Leu) based high-molecular-weight and biodegradable unsaturated poly(ester-amide)s (PEAs) was reported. Amino acid L-phenylalanine (Phe) was used to synthesize some copolymers for a comparative study. The syntheses of three types of new unsaturated PEA polymers were explored – (i) Unsaturated PEA homopolymers (UPEAs) composed of fumaric acid, aliphatic diol and one alpha-amino acid: L-Leu or L-Phe; (ii) L-Leu-based unsaturated-saturated copolymers (USPEAs) composed of aliphatic diol, fumaric and saturated fatty diacid, and (iii) L-Leu- and L-Phe-based copolymers (co-UPEAs) composed of 100% fumaric acid, aliphatic diol and combinations of both amino acids. Many of the targeted unsaturated polymers were soluble in common organic solvents and showed good film-forming property. The unsaturated PEA polymers were further chemically modified into functional derivatives and subjected to thermal and photochemical transformations (curing) that substantially expand material properties and, hence, the scopes of potential applications as absorbable surgical devices and drug carriers.  相似文献   

6.
There is a challenging need for the development of new alternative nanostructures that can allow the coupling and/or encapsulation of therapeutic/diagnostic molecules while reducing their toxicity and improving their circulation and in-vivo targeting. Among the new materials using natural building blocks, peptides have attracted significant interest because of their simple structure, relative chemical and physical stability, diversity of sequences and forms, their easy functionalization with (bio)molecules and the possibility of synthesizing them in large quantities. A number of them have the ability to self-assemble into nanotubes, -spheres, -vesicles or -rods under mild conditions, which opens up new applications in biology and nanomedicine due to their intrinsic biocompatibility and biodegradability as well as their surface chemical reactivity via amino- and carboxyl groups. In order to obtain nanostructures suitable for biomedical applications, the structure, size, shape and surface chemistry of these nanoplatforms must be optimized. These properties depend directly on the nature and sequence of the amino acids that constitute them. It is therefore essential to control the order in which the amino acids are introduced during the synthesis of short peptide chains and to evaluate their in-vitro and in-vivo physico-chemical properties before testing them for biomedical applications. This review therefore focuses on the synthesis, functionalization and characterization of peptide sequences that can self-assemble to form nanostructures. The synthesis in batch or with new continuous flow and microflow techniques will be described and compared in terms of amino acids sequence, purification processes, functionalization or encapsulation of targeting ligands, imaging probes as well as therapeutic molecules. Their chemical and biological characterization will be presented to evaluate their purity, toxicity, biocompatibility and biodistribution, and some therapeutic properties in vitro and in vivo. Finally, their main applications in the biomedical field will be presented so as to highlight their importance and advantages over classical nanostructures.  相似文献   

7.
Synthetic polymers are indispensable in biomedical applications because they can be fabricated with consistent and reproducible properties, facile scalability, and customizable functionality to perform diverse tasks. However, currently available synthetic polymers have limitations, most notably when timely biodegradation is required. Despite there being, in principle, an entire periodic table to choose from, with the obvious exception of silicones, nearly all known synthetic polymers are combinations of carbon, nitrogen, and oxygen in the main chain. Expanding this to main-group heteroatoms can open the way to novel material properties. Herein the authors report on research to incorporate the chemically versatile and abundant silicon and phosphorus into polymers to induce cleavability into the polymer main chain. Less stable polymers, which degrade in a timely manner in mild biological environments, have considerable potential in biomedical applications. Herein the basic chemistry behind these materials is described and some recent studies into their medical applications are highlighted.  相似文献   

8.
α-Amino acids are one type of the main building blocks of living systems, being the primary components of all naturally occurring peptides and proteins. They are the simplest optically active compound in the nature and have multiple functional groups, which enable them to be transformed into a wide variety of optically active substances. The resulting materials show a wide variety of functions such as electron transfer, information transfer, photo reactivity and selective catalytic function, which cannot be imitated by synthetic compounds. Functional macromolecular materials using biological chiral resources such as amino acids have been drawing much interest due to their biocompatibility and biodegradability easing the ecological trouble because amino acid residues can be targeted for cleaving by different enzymes. Also, this type of polymer contains nitrogen, which the organism needs for their growth and shows excellent hydrophilic character, reasonably high melting points and good materials properties even at relatively low molecular weights. However, polymers composed of amino acids alone have limited thermal stability and are insoluble in many common organic solvents, which make these materials difficult to fabricate and utilize. Preparation of hybrid systems between conventional synthetic polymers and linear sequences of amino acids are interesting because amino acid segments possess unique properties, such as directional polarity, chirality and their capability to undergo specific noncovalent interactions. These properties can potentially be used for designing novel hierarchical superstructures with tunable material properties for a wide variety of applications. Herein, the synthesis and properties of synthetic macromolecules having natural amino acids are reviewed in details up to now with excluding polypeptides.  相似文献   

9.
Biodegradable polymers belong to a family of polymer materials that found applications ranged from medical applications including tissue engineering, wound management, drugs delivery, and orthopedic devices, to packaging and films applications. For broadening their potential applications, biodegradable polymers are modified utilizing several methods such as blending and composites forming, which lead to new materials with unique properties including high performance, low cost, and good processability. This paper reviews the recent information about the morphology of blends consisting of both biodegradable and non-biodegradable polymers and associated mechanical, rheological, and thermal properties of these systems as well as their degradation behavior. In addition, the mechanical performance of composites based on biodegradable polymers is described.  相似文献   

10.
Utilization of polymers as biomaterials has greatly impacted the advancement of modern medicine. Specifically, polymeric biomaterials that are biodegradable provide the significant advantage of being able to be broken down and removed after they have served their function. Applications are wide ranging with degradable polymers being used clinically as surgical sutures and implants. To fit functional demand, materials with desired physical, chemical, biological, biomechanical, and degradation properties must be selected. Fortunately, a wide range of natural and synthetic degradable polymers has been investigated for biomedical applications with novel materials constantly being developed to meet new challenges. This review summarizes the most recent advances in the field over the past 4 years, specifically highlighting new and interesting discoveries in tissue engineering and drug delivery applications. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

11.
Nanohybrid materials prepared by the nanoscale incorporation of organic moieties into the interlayer spaces of layered inorganic hosts have attracted a great deal of interest because of their wide applications in industry and environmental protection. In this investigation, a simple and green method is reported for the preparation of novel trifunctionalized organoclays (OCs) using protonated form of acidic (aspartic and glutamic acid) and hydroxyl (serine and tyrosine) functionalized α-amino acids with Cloisite Na+. The synthesized OCs were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and dispersibility measurement. X-ray diffraction results show that the basal spacing of the OCs increased with amino acids loading that affirm that the intercalation was successful. The morphology of these novel materials was examined by scanning electron microscopy, field emission scanning electron microscopy and transmission electron microscopy. Thermogravimetric analysis show that the quantity of organic modifier in the organo-bionanoclays is in good agreement with the theoretically calculated stoichiometric content expected for approximately entire exchange of Na+ ions by amino acid cations. These results are very important and relevant to the preparation of low-cost, biocompatible and biodegradable organo-nanoclays for industrial applications.  相似文献   

12.
The recent upswing in peptide chemistry has been accompanied by an increasing interest in nonproteinogenic amino acids. These include the α,α-disubstituted glycines, the best known of which is Aib (2-aminoisobutyric acid, 2-methylalanine). These α-amino acids occur in natural oligopeptides such as the peptaibols, a class of membrane-active ionophores that has been isolated from fungal cultures. The twofold substitution at the α-C atom of the amino acids severely restricts the conformational freedom of the peptides and causes particular secondary structures to be favored; thus, α, α-disubstituted α-amino acids induce the formation of β turns or helices. 3-Amino-2H-azirines are ideal synthons for the construction of oligopeptides, cyclic peptides and depsipeptides (peptolides) containing such α,α-disubstituted α-amino acids. The presence of the ring strain in these molecules means that they can be used in peptide coupling without the need for additional activating reagents. Using 3-amino-2H-azirines a large array of heterocycles containing α, α-disubstituted α-amino acids as structural elements within their skeleton can be synthesized. The driving force in these reactions is the release of the strain on the three-membered ring, which usually takes place in a ring-expansion reaction. The mechanistic elucidation of these reactions, which can be quite complex, contains some surprises.  相似文献   

13.
Natural polymers are synthesized and decomposed under physiological conditions. However, it is challenging to develop synthetic polymers whose formation and reversibility can be both controlled under physiological conditions. Here we show that both linear and branched DNA polymers can be synthesized via molecular hybridization in aqueous solutions, on the particle surface, and in the extracellular matrix (ECM) without the involvement of any harsh conditions. More importantly, these polymers can be effectively reversed to dissociate under the control of molecular triggers. Since nucleic acids can be conjugated with various molecules or materials, we anticipate that molecularly regulated reversible DNA polymerization holds potential for broad biological and biomedical applications.  相似文献   

14.
New polycondensation (PC) methods of polymer synthesis using non-traditional active derivative of dicarboxylic acids are reviewed. The new PC methods are named by general name “Active Polycondensation” (APC) to tell them from traditional low-temperature PC. The most of these methods are based on well known in peptide chemistry approaches to the activation of carboxylic groups. In the present paper the syntheses of heterochain polymers of basic classes - polyamides, polyesters, polyurethanes, polyureas, and polybenzazoles by interaction of various active diesters with di- and polyfunctional nucleophiles are discussed in brief. Special attention is given to the synthesis of non-conventional heterochain macromolecular systems, in particular poly(ester amide)s (PEAs), composed of naturally occurring α-amino acids and other non-toxic building blocks like fatty diacids and diols - synthetic analogues of naturally occurring amino acid based polymers - peptides and proteins. The synthesis and properties, biodegradation, and some practical applications of PEAs are discussed in brief.  相似文献   

15.
The control of chain-ends is fundamental in modern macromolecular chemistry for directed one-to-one bioconjugation and the synthesis of advanced architectures such as block copolymers or bottlebrush polymers and the preparation of advanced soft materials. Polyphosphazenes are of growing importance as elastomers, biodegradable materials and in biomedical drug delivery due to their synthetic versatility. While controlled polymerization methods have been known for some time, controlling both chain-ends with high fidelity has proven difficult. We demonstrate a robust synthetic route to hetero and homo α,ω-chain-end functionalized polyphosphazenes via end-capping with easily accessible, functionalized triphenylphosphine-based phosphoranimines. A versatile thiol-ene “click”-reaction approach then allows for subsequent conversion of the end-capped polymers with various functional groups. Finally, we demonstrate the utility of this system to prepare gels based on homo α,ω-chain-end functionalized polyphosphazenes. This development will enhance their progress in various applications, particularly in soft materials and as degradable polymers.  相似文献   

16.
Hybrids, produced by hybridization of proteins, peptides, DNA, and other new biomolecules with polymers, often have unique functional properties. These properties, such as biocompatibility, stability and specificity, lead to various smart biomaterials. This review mainly introduces biomolecule-polymer hybrid materials by reversible deactivation radical polymerization(RDRP), emphasizing reverse addition-fragmentation chain transfer(RAFT) polymerization, and nitroxide mediated polymerization(NMP). It includes the methods of RDRP to improve the biocompatibility of biomedical materials and organisms by surface modification. The key to the current synthesis of biomolecule-polymer hybrids is to control polymerization. Besides, this review describes several different kinds of biomolecule-polymer hybrid materials and their applications in the biomedical field. These progresses provide ideas for the investigation of biodegradable and highly bioactive biomedical soft tissue materials. The research hotspots of nanotechnology in biomedical fields are controlled drug release materials and gene therapy carrier materials. Research showed that RDRP method could improve the therapeutic effect and reduce the dosage and side effects of the drug.Specifically, by means of RDRP, the original materials can be modified to develop intelligent polymer materials as membrane materials with selective permeability and surface modification.  相似文献   

17.
生物降解聚合物的研究和产业化进展及展望   总被引:3,自引:0,他引:3  
结合作者等近十年来在生物降解聚合物领域的研究和产业化工作,本文概述了聚乳酸、聚氨基酸、聚对二氧六环酮及其它生物降解聚合物的合成进展,综述了可生物降解温度敏感水凝胶、形状记忆高分子材料的研究概况,阐述了可生物降解聚合物在生物活性大分子控释体系、超细纤维组织工程支架上的应用研究,介绍了可生物降解聚合物在食品包装、纺织和汽车电子等方面的应用,总结了可生物降解聚合物、医疗器械、药物制剂和组织工程等领域产业化近况.最后展望了生物降解聚合物的研究、应用和产业化前景.  相似文献   

18.
立构复合结晶是高分子结晶中的一种普遍现象,也是不同高分子之间共结晶的特殊形式.互为立体异构高分子在共混物和立体嵌段共聚物中可形成立构复合结晶.由于这种独特的链凝聚结构,立构复合结晶材料与相应的同质结晶材料的性能显著不同,立构复合结晶通常可提高高分子材料的熔点、耐热性、结晶能力、结晶度、机械力学性能、耐溶剂性能等.通过立构复合结晶,可使一些非晶或难结晶的高分子转变为可结晶或高结晶度的状态,从而实现材料性能的转变.因此,互为立体异构高分子之间的立构复合结晶为聚合物材料的性能优化和调控提供了有效的途径.文献已报道了多类可立构复合结晶的聚合物体系,包括脂肪族聚酯、脂肪族聚碳酸酯、聚甲基丙烯酸酯、聚酰胺和聚酮等.本文根据聚合物化学结构的不同,针对文献已报道的可立构复合结晶的高分子体系,综述了其立构复合结晶的形成条件、结构特征与物理性质.  相似文献   

19.
Poly(amide-ester)s derived from five α-amino acid mixtures including glycine, DL-and L-alanines, DL- and L-phenylalanines, and three different diols including 1,6-hexanediol, 1,4-butanediol and trans-1,4-cyclohexanedimethanol were synthesized by interfacial, solution and melt polymerizations. All of the polymers had Tg's ranging from −6 to 50°C. The incorporation of rigid trans-1,4-cyclohexanedimethanol in the main chain significantly increased the Tg of these polymers. The degree of crystallinity depended on the type of amino acid and decreased with the size of substituent on the α-carbon in the amino acid. Biodegradation of these polymers were tested semi-quantitatively by turbidity measurements. Enzymes used included subtilisin, pronase E, α-chymotrypsin, fusarium, and lipase. The incorporation of trans-1,4-cyclohexanedimethanol unit slowed down degradation rate. Polymers containing L-amino acid generally degraded faster than the polymers containing DL-amino acids. Quantitative biodegradation testings using ninhydrin analysis, total organic analysis, and weight loss done on alanine derived polymers indicated that the degradation of the polymers by pronase E occurred at the ester bonds first and was specific against L-amino acid. The degradation was followed by slower amide bond degradation.  相似文献   

20.
Polyisopeptides are non-peptidic polymers formed by α,ω-polycondensation of tri- or multi-functional α-amino acids. They are expected to possess physical and mechanical properties of synthetic polyamides (or polyesters) and to be biodegradable. In the present paper, the methods of polyisopeptide synthesis are reviewed. Many of them are specific to a given α-amino acid (and sometimes its derivatives, too). We discuss here about two methods giving satisfactory results. One is the polymerization of L-aspartic β-lactam α-esters, in which the structure of a resulting polymer varies according to the solvent used. A new interpretation on the basis of the nature of catalyst anion species (free ion, ion pair) is presented. The other subject is the active ester polycondensation method applied to the amino- and carboxyl- protected L-cystine polyisopeptide and its selective deprotection successively until total deprotection to free amino- and free carboxylic groups. The final polymer is the first poly-L-cystine ever reported in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号