首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of different mixing protocols on the charged nature and size distribution of the aqueous complexes of hyperbranched poly(ethylene imine) (PEI) and sodium dodecyl sulfate (SDS) was investigated by electrophoretic mobility and dynamic light scattering measurements at different pH values, polyelectrolyte concentrations, and ionic strengths. It was found that at large excess of the surfactant a colloidal dispersion of individual PEI/SDS nanoparticles forms via an extremely rapid mixing of the components by means of a stop-flow apparatus. However, the application of a less efficient mixing method under the same experimental conditions might result in large clusters of the individual PEI/SDS particles as well as in a more extended precipitation regime compared with the results of stop-flow mixing protocol. The study revealed that the larger the charge density and concentration of the PEI, the more pronounced the effect of mixing becomes. It can be concluded that an efficient way to avoid precipitation in the solutions of oppositely charged polyelectrolytes and surfactants might be provided by extending the range of kinetically stable colloidal dispersion of polyelectrolyte/surfactant nanoparticles via the application of appropriate mixing protocols.  相似文献   

2.
Polymer/surfactant interactions at the air/water interface   总被引:1,自引:0,他引:1  
The development of neutron reflectometry has transformed the study and understanding of polymer/surfactant mixtures at the air/water interface. A critical assessment of the results from this technique is made by comparing them with the information available from other techniques used to investigate adsorption at this interface. In the last few years, detailed information about the structure and composition of adsorbed layers has been obtained for a wide range of polymer/surfactant mixtures, including neutral polymers and synthetic and naturally occurring polyelectrolytes, with single surfactants or mixtures of surfactants. The use of neutron reflectometry together with surface tensiometry, has allowed the surface behaviour of these mixtures to be related directly to the bulk phase behaviour. We review the broad range of systems that have been studied, from neutral polymers with ionic surfactants to oppositely charged polyelectrolyte/ionic surfactant mixtures. A particular emphasis is placed upon the rich pattern of adsorption behaviour that is seen in oppositely charged polyelectrolyte/surfactant mixtures, much of which had not been reported previously. The strong surface interactions resulting from the electrostatic attractions in these systems have a very pronounced effect on both the surface tension behaviour and on adsorbed layers consisting of polymer/surfactant complexes, often giving rise to significant surface ordering.  相似文献   

3.
We describe the results of theoretical and experimental studies of the regular heterogeneities on a nanometer scale which are formed in the systems containing weakly charged polyelectrolytes due to the competition of ionic and hydrophobic interactions. In particular, we consider the effect of microphase separation in poor solvent polyelectrolyte solutions and gels and nano-self-assemblies emerging in the complexes of polyelectrolyte gels with oppositely charged surfactants. The practically important application connected with metal nanoparticles formation in regular microstructures in polyelectrolyte systems is considered as well.  相似文献   

4.
The equilibrium nature of the association between the hyperbranched poly(ethyleneimine) (PEI) and sodium dodecyl sulfate (SDS) has been investigated in the presence of excess polyelectrolyte. It was found that the thermodynamic stability of the system considerably depends on the ionization degree of the PEI molecules. In the case of slightly charged PEI molecules, the PEI/SDS mixtures are thermodynamically stable solutions in the pre-precipitation concentration range. In contrast, at low and moderate pH kinetically stable colloidal dispersions of the positively charged PEI/SDS particles can be observed at low surfactant-to-polyelectrolyte ratios. These dispersions are stabilized by the uncompensated charges of the PEI molecules. In addition to the primary PEI/SDS particles, larger aggregates may also appear in the mixtures. The higher the protonation degree of the PEI molecules and the smaller the net charge of the primary PEI/SDS particles, the more likely the aggregate formation becomes.  相似文献   

5.
The interaction of star-shaped poly(acrylic acid) having various numbers of arms (5, 8, and 21) and a strong cationic polyelectrolyte, viz., poly( N-ethyl-4-vinylpyridinium bromide), was examined at pH 7 by means of turbidimetry and dynamic light scattering. Mixing aqueous solutions of the oppositely charged polymeric components was found to result in phase separation only if their base-molar ratio Z = [N+]/[COO (-) + COOH] exceeds a certain critical value ZM ( ZM < 1); this threshold value is determined by the number of arms of the star-shaped polyelectrolyte and the ionic strength of the surrounding solution. At Z < ZM, the homogeneous aqueous mixtures of the oppositely charged polymeric components contain two types of complex species clearly differing in their sizes, with the fractions of these species appearing to depend distinctly on the number of arms of the star-shaped poly(acrylic acid), the base-molar ratio of the oppositely charged polymeric components in their mixtures, and the ionic strength of the surrounding solution. The small complex species (major fraction) are assumed to represent the particles of the water-soluble interpolyelectrolyte complex whereas the large complex species (minor fraction) are considered to be complex aggregates.  相似文献   

6.
Rheology and phase separation were investigated for aqueous mixtures of two oppositely charged hydrophobically modified polyelectrolytes. The typical phase separation, normally seen for oppositely charged polymer mixtures, is dramatically reduced by the presence of hydrophobic modification, and phase separation is only detected close to the point of charge neutralization. While the two polyelectrolytes separately can give high viscosities and a gel-like behavior, a pronounced maximum in viscosity and storage modulus with the mixing ratio of the polyelectrolytes is observed; the maximum is located between the points of charge and hydrophobe stoichiometry and reflects a combination of hydrophobic and electrostatic association. Lowering the charge density of the anionic polymer leads to a strengthened association at first, but at lower charge densities there is a weakened association due to the onset of phase separation. The strength of the electrostatic interaction was modified by adding salt. Increased ionic strength can lead to phase separation and to increased or decreased viscosity depending on the polyelectrolyte mixing ratio.  相似文献   

7.
Mixing of oppositely charged surfactants and polyelectrolytes in aqueous solutions can lead to associative phase separation, where the concentrated phase is a viscous liquid, gel, or precipitate. In recent years, this phenomenon has been exploited to form gel-like particles, ranging from approximately 100 to 4000 microm in diameter, whose stability depends on equilibrium phase behavior. As the sample composition is varied, these particles either remain stable (in a two-phase mixture) or dissolve over time. Here, we present the formation of reversibly swelling gel particles from mixtures of N,N,N-trimethylammonium-derivatized hydroxyethyl cellulose (JR-400) and sodium dodecyl sulfate (SDS), whose swelling is controlled by the ambient solution conditions. The effects of cross-linking density and surfactant concentration are investigated by gravimetry and confocal microscopy. The resulting particles have a core/shell morphology and undergo reversible swelling/collapse transitions which, depending on the cross-link density, can be either gradual or abrupt with changing SDS concentration.  相似文献   

8.
Polymer-surfactant mixtures are increasingly being used in a wide range of applications. Weakly interacting systems, such as SDS/PEO and SDS/PVP, comprise ionic surfactants and neutral polymers, while strongly interacting systems, such as SDS/POLYDMDAAC and C12TAB/NaPSS, comprise ionic surfactants and oppositely charged ionic polymers. The complex nature of interactions in the mixtures leads to interesting and surprising surface tension profiles as the concentrations of polymer and surfactant are varied. The purpose of our research has been to develop a model to explain these surface tension profiles and to understand how they relate to the formation of different complexes in the bulk solution. In this paper we show how an existing model based on the law of mass action can be extended to model the surface tension of weakly interacting systems, and we also extend it further to produce a model for the surface tension of strongly interacting systems. Applying the model to a variety of strongly interacting systems gives remarkable agreement with the experimental results. The model provides a sound theoretical basis for comparing and contrasting the behavior of different systems and greatly enhances our understanding of the features observed.  相似文献   

9.
This paper reports turbidity, rheology, zeta potential, and rheo-small angle light scattering measurements on aqueous mixtures of oppositely charged and hydrophobically modified hydroxyethylcellulose derivatives (HM-HEC(?) and HM-HEC(+)) and mixtures of oppositely charged hydroxyethylcellulose (HEC(?) and HEC(+)). The experiments were restricted to the one-phase region, i.e., at mixing ratios before and after the two-phase area. The associative phase separation behavior usually observed when mixing oppositely charged polyelectrolytes was undetectable in the mixtures of the polyelectrolytes without attached hydrophobic groups. Upon modification of HEC by incorporation of pendant hydrophobic groups and by introducing charges of negative or positive sign (HM-HEC(?) and HM-HEC(+)), the mixtures showed phase separation over a certain mixing interval, revealing the existence of large polyelectrolyte complexes. The zero shear viscosity was strongly dependent on both the hydrophobicity of the polymers and the mixing ratio, increasing significantly with hydrophobic modification of polyelectrolytes. The strong enhancement of the turbidity and the viscosity drop as the two-phase area is approached suggest the formation of fragmented non-connected complexes. This work demonstrates that if the oppositely charged polyions have a hydrophilic character, it is not necessary that the attractive Coulombic forces induce insoluble polyelectrolyte complexes.  相似文献   

10.
Mixing of oppositely charged surfactants and polyelectrolytes in aqueous solutions can lead to associative phase separation, where the concentrated phase assumes the form of a viscous liquid, gel, or precipitate. This phenomenon can lead to the formation of gel-like particles whose size and polydispersity can be controlled. Here we present phase behavior and structural studies of gel-like particles formed by mixing drops of N,N,N-trimethylammonium derivatized hydroxyethyl cellulose (JR-400) polyelectrolyte solution with oppositely charged anionic and catanionic surfactant solutions composed of sodium perfluorooctanoate (FC7) and cetyltrimethylammonium bromide (CTAB). Gel formation apparently occurs due to the collapse of the polyelectrolyte chains upon the adsorption of surfactant. This process results in the release of simple ions and water, and yields dense gel-like beads. The diameter of these beads ranges approximately from 200 to 4000 μm. Both the effects of solution composition and the method of preparation are studied by optical and confocal microscopy, and are linked to the structure and stability of the bead. Our observations suggest that the structure of the resulting particles is governed by the solution composition and the method of preparation, while the particle stability is governed by phase behavior alone.  相似文献   

11.
The combination of two oppositely charged polyelectrolytes results in polyelectrolyte complexes. The simultaneous interfacial reaction between the different polyions leads to formation of polyelectrolyte complex membranes. Some of these have a very good performance in the membrane process pervaporation, especially for dehydration of organic liquids. The combination of a polyelectrolyte with an ionic surfactant of opposite charge results like-wise membranes but with other separation properties. The differences between the two types of membranes, formed from cellulosesulfate in combination with cationic polyelectrolytes or cationic surfactants, will be discussed.  相似文献   

12.
Interactions between cationic bottle-brush polyelectrolyte layers adsorbed on mica across salt and oppositely charged surfactant solutions were investigated with the interferometric surface force apparatus, and the results were compared with what is known for similarly charged linear polyelectrolytes. Ellipsometric measurements demonstrated that the bottle-brush polyelectrolytes, which contain 45 units long poly(ethylene oxide) side chains, are more readily desorbed than linear equivalents when the ionic strength of the solution is increased. It is argued that this is due to the steric repulsion between the poly(ethylene oxide) side chains that reduces the surface affinity. The preadsorbed bottle-brush polyelectrolyte layers were also exposed to sodium dodecyl sulfate (SDS) solutions. It was found that the presence of SDS affected the force profiles less than observed for similarly charged linear polyelectrolytes. This observation was attributed to excluded volume constraints imposed by the poly(ethylene oxide) side chains that reduces the accessibility of the charged polyelectrolyte segments and counteracts formation of large aggregates within the layer.  相似文献   

13.
Interaction of sodium dodecyl sulfate (SDS) with the cationic polyelectrolyte poly(ethyleneimine) (PEI) was investigated in this study. Turbidity measurements were performed in order to analyze the interaction and complex formation in bulk solution as a function of polymer concentration and pH. Surface tension measurements were made to investigate the properties of SDS/PEI/water mixtures at air/solution interface. Results revealed that SDS/PEI complexes form in solution depending on the surfactant and polymer concentration. A decrease was observed in surface tension values in the presence of SDS/PEI mixtures compared to the values of pure SDS solutions. Both solution and interfacial properties exhibited pH dependent behavior. A shift was seen in the critical micelle concentration of SDS solutions as a function of PEI concentration and solution pH. Monovalent and divalent salt additions showed some influence on the interfacial properties of SDS solutions in the presence of PEI.  相似文献   

14.
In the present paper, the effect of different neutral polymers on the self-assemblies of hyperbranched poly(ethyleneimine) (PEI) and sodium dodecyl sulfate (SDS) has been investigated at different ionization degrees of the polyelectrolyte molecules. The investigated uncharged polymers were poly(ethyleneoxide), poly(vinylpyrrolidone) and dextran samples of different molecular mass. Dynamic light scattering and electrophoretic mobility measurements demonstrate that the high molecular mass PEO or PVP molecules adsorb considerably onto the surface of the PEI/SDS nanoparticles. At appropriate concentrations of PVP or PEO, sterically stabilized colloidal dispersions of the polyelectrolyte/surfactant nanoparticles with hydrophobic core and hydrophilic corona can be prepared. These dispersions have considerable kinetic stability at high ionic strengths where the accelerated coagulation of the PEI/SDS nanoparticles results in precipitation in the absence of the neutral polymers. In contrast, the addition of dextran does not affect considerably the kinetic stability of PEI/SDS mixtures because of its low adsorption affinity towards the surface of the polyelectrolyte/surfactant nanoparticles.  相似文献   

15.
The swelling behavior in the solutions of sodium chloride, linear polyelectrolytes and ionic surfactants of the composites based on clay mineral bentonite (BENT) embedded in neutral and slightly charged poly(acrylamide) (PAAm) gels is studied. Negatively charged flat clay particles incorporated into polymer gel adsorb oppositely charged surfactant and linear polyelectrolyte and attract the charged chains of cationic polymer matrix. The results of SAXS study manifest the formation of lamella structure of the cationic surfactant adsorbed by the clay plates. The gels loaded with the clay show a strong response to changes in the nature and the composition of the ionic environment.  相似文献   

16.
Investigations dealing with fundamental aspects of the interaction between covalently cross-linked polyelectrolyte gels and oppositely charged surfactants are reviewed. For reference, a brief summary of results from recent studies of associative phase separation in linear polyelectrolyte/surfactant mixtures is also included. It is found that great progress has been made in several sub-areas since the first reports appeared in the early 1990's. The frequently observed surfactant-induced volume transition has been studied in detail. Its relation to associative phase separation in solutions and the important role of polyion-mediated micelle–micelle attractions have been clarified. Phase separation in gels, in particular core/shell structures, has been studied in great detail. The importance of network mediated elastic forces between two phases coexisting in the same gel has been demonstrated and some of their consequences have been clarified. Hydrophobic interactions between polyion and micelle have been found to have strong effects on both binding and swelling isotherms. The effect of salt, which has been found to sometimes disfavor, sometimes promote surfactant binding, is quite well understood. The microstructure of gels in the collapsed state has been studied in great detail and is often found to be highly ordered, resembling liquid crystalline phases common to surfactant/water systems. The kinetics of surfactant binding and the associated volume change has been investigated to some extent. Progress has been made for gels displaying phase separation during the volume transition.  相似文献   

17.
Measurements of counterion binding in mixtures of surfactant aqueous solutions have been performed to study the structure of the anionic/cationic mixed micelle/solution interface. The mixtures studied were SDS/DDAC and STS/TDPC. The binding of chloride and sodium ions to mixed anionic/cationic micelles was measured using ion-specific electrodes. Counterion binding was found to be strongly dependent on the molar ratio of surfactants present. The mixed micelle/solution interface includes the headgroups of both surfactants and counterions of surfactant in excess. The addition of oppositely charged surfactant caused an increasing dissociation of counterions.  相似文献   

18.
The impact of an electrolyte on aqueous mixtures of oppositely charged macromolecules and surfactants is usually explained by assuming an equilibrium association between the components. In this work, it is shown that the nonequilibrium character of polyelectrolyte/surfactant systems plays a crucial role in the interpretation of the effect of salt. Experimental investigations of mixtures of sodium poly(styrenesulfonate) (PSS) and hexadecyltrimethylammonium bromide (CTAB) reveal two distinct effects of added sodium chloride (NaCl). At small and moderate NaCl concentrations, the major impact of the electrolyte is manifested in the reduction of the kinetically stable composition range in which the PSS/CTAB mixtures are trapped in the nonequilibrium colloidal dispersion state. The application of high salt concentrations, however, primarily affects the equilibrium phase properties through considerably decreasing the amount of surfactant bound to the polyelectrolyte.  相似文献   

19.
Recent progress in the understanding of the binding of surfactants to hydrophobically modified polymers (HMP), and the consequences of such binding, is reviewed. HMP are water-soluble polymers onto which low proportions of hydrophobic sidechains (hydrophobes) have been grafted. In an aqueous environment, the HMP hydrophobes associate among themselves and with added surfactant molecules into micelle-like aggregates. An HMP may therefore be considered as a ‘modified surfactant’, and the binding of surfactants to HMP is analogous to the mixed micellisation in mixed surfactant solutions. The binding isotherm gives the concentration of free (monomeric) surfactant and the stoichiometry of the HMP/surfactant complex at different total compositions. In mixtures involving ionic surfactants, it is found that the free surfactant often dominates, and gives important contributions to the ionic strength. Characteristic properties of HMP/surfactant mixtures may be related to stoichiometries of the mixed complexes. Thus, the maximum in solution viscosity, which is commonly found in HMP/surfactant mixtures, occurs at a similar hydrophobe stoichiometry (ratio of bound surfactant to HMP hydrophobe) for many different systems, although the total concentrations of surfactant at the maximum may vary by orders of magnitude, depending on the surfactant cmc. The solubility of a complex of oppositely charged HMP and surfactant is related to the charge stoichiometry of the complex. The phase separation/redissolution phenomena occurring in the bulk solution influence the HMP adsorption to surfaces and the forces between surfaces with adsorbed HMP.  相似文献   

20.
Microcalorimetric techniques, combined with turbidity measurements, were used to study the thermodynamics of self-assembling of hydrophobically modified cationic polysaccharides and their mixtures with oppositely charged surfactants in aqueous solution. The studied polyelectrolytes were a series of polymers based on dextran having pendant N-(2-hydroxypropyl)-N,N-dimethyl-N-alkylammonium chloride groups randomly distributed along the polymer backbone. The parameters for their micellization process are evaluated from the results of the observed dilution enthalpy curves and compared with those of the related cationic surfactants (DTAC and CTAC). The microcalorimetric results for the mixed systems (polyelectrolytes with oppositely charged surfactants) are used along with turbidity measurements to characterize systematically the thermodynamics of their interaction. The phase behavior is described and the interaction enthalpies are derived from the differences between the observed enthalpy curves with and without polyelectrolyte. Therefore, we discuss in detail the effect of changing the alkyl chain length of polyelectrolyte pendant groups, the molecular weight of the dextran backbone, and the temperature of the measurements on the interactions between polyelectrolyte and surfactant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号