首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Riser operating modes are vital to designing a circulating fluidized bed (CFB) reactor for a required process of either a gas-solid or a gas-catalytic nature. Different operating modes provide different solids’ residence times and mixing behaviors, which define the reactions’ efficiency and yield. The literature demonstrates distinct operating modes resulting from observed differences in slip factors and the range of particle velocities and their associated residence time distribution. The present research uses positron emission particle tracking (PEPT) in a riser of B-type bed material to determine the different operating modes by measuring (i) particle velocities and residence time distribution, (ii) population densities of these particles in the cross-sectional area of the riser, and (iii) solids flow pattern at the bottom of the riser. Data treatment defines four distinct solids hold-up regimes in the riser and proposes a "phase diagram" depicting the existence of the different operating modes (dilute, dense, core-annulus and combined) as a function of the superficial gas velocity and solids circulation flux in the riser. The delineated regimes have good agreement with available literature data and known industrial operations. Comparison with literature data for risers using A-type powders is also fair. The diagram enables CFB designers to better delineate operating characteristics.  相似文献   

2.
Interparticle collision plays an important role in the mechanics of gas–solid two-phase flows. The paper presents direct measurements of collision rate as well as collision properties of spherical glass beads with sizes of 500 ± 50 μm in the upper dilute zone of a cold pilot-scale CFB riser, by using a high-speed imaging system. The recording rate of the high-speed digital camera is as high as 5000 fps with a resolution of 640 × 480. A large number of particle movement images at a height of 3.54 m above the distributor plates were taken. Manual inspection and automatic methods based on digital image processing algorithms were carried out to analyze particle image sequences. The experimental results show that the measured particle collision rate is proportional both to the particles’ average relative translational velocity and the square of the particle number density, which coincides with the collision theory derived according to the analogy of kinetic theory of gases. But the theoretical model is found to overestimate the real collision rates, and a coefficient a of 0.33 may be used to correct this discrepancy. The possible reasons for this discrepancy are also discussed. The measurement results of collision properties based on more than 50 particle collision events agrees well with Walton’s hard-sphere collision model. The three collision parameters, i.e., the average coefficient of friction μ, the normal and tangential coefficients of restitution e and β0, for the glass beads used are measured to be 0.175 ± 0.005, 0.96 ± 0.02, and 0.43 ± 0.09, respectively.  相似文献   

3.
The dispersion characteristics of fuel particles in the dense phase zone in circulating fluidized bed (CFB) boilers have an important influence on bed temperature distribution and pollutant emissions. However, previous research in literature was mostly on small-scale apparatus, whose results could not be applied directly to large-scale CFB with multiple dispersion sources. To help solve this problem, we proposed a novel method to estimate the lateral dispersion coefficient (Dx) of fuel particles under partial coal cut-off condition in a 350 MW supercritical CFB boiler based on combustion and dispersion models. Meanwhile, we carried out experiments to obtain the Dx in the range of 0.1218–0.1406 m2/s. Numerical simulations were performed and the influence of operating conditions and furnace structure on fuel dispersion characteristics was investigated, the simulation value of Dx was validated against experimental data. Results revealed that the distribution of bed temperature caused by the fuel dispersion was mainly formed by char combustion. Because of the presence of intermediate water-cooled partition wall, the mixing and dispersion of fuel and bed material particles between the left and right sides of the furnace were hindered, increasing the non-uniformity of the bed temperature near furnace front wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号