首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The insertion of charged amino acid residues into the hydrophobic part of lipid bilayers is energetically unfavorable yet found in many cationic membrane peptides and protein domains. To understand the mechanism of this translocation, we measured the (13)C-(31)P distances for an Arg-rich beta-hairpin antimicrobial peptide, PG-1, in the lipid membrane using solid-state NMR. Four residues, including two Arg's, scattered through the peptide were chosen for the distance measurements. Surprisingly, all residues show short distances to the lipid (31)P: 4.0-6.5 A in anionic POPE/POPG membranes and 6.5-8.0 A in zwitterionic POPC membranes. The shortest distance of 4.0 A, found for a guanidinium Czeta at the beta-turn, suggests N-H...O-P hydrogen bond formation. Torsion angle measurements of the two Arg's quantitatively confirm that the peptide adopts a beta-hairpin conformation in the lipid bilayer, and gel-phase 1H spin diffusion from water to the peptide indicates that PG-1 remains transmembrane in the gel phase of the membrane. For this transmembrane beta-hairpin peptide to have short (13)C-(31)P distances for multiple residues in the molecule, some phosphate groups must be embedded in the hydrophobic part of the membrane, with the local (31)P plane parallel to the beta-strand. This provides direct evidence for toroidal pores, where some lipid molecules change their orientation to merge the two monolayers. We propose that the driving force for this toroidal pore formation is guanidinium-phosphate complexation, where the cationic Arg residues drag the anionic phosphate groups along as they insert into the hydrophobic part of the membrane. This phosphate-mediated translocation of guanidinium ions may underlie the activity of other Arg-rich antimocrobial peptides and may be common among cationic membrane proteins.  相似文献   

2.
The aggregation and packing of a membrane-disruptive beta-hairpin antimicrobial peptide, protegrin-1 (PG-1), in the solid state are investigated to understand its oligomerization and hydrogen-bonding propensity. Incubation of PG-1 in phosphate buffer saline produced well-ordered nanometer-scale aggregates, as indicated by 13C and 15N NMR line widths, chemical shifts, and electron microscopy. Two-dimensional 13C and 1H spin diffusion experiments using C-terminus strand and N-terminus strand labeled peptides indicate that the beta-hairpin molecules in these ordered aggregates are oriented parallel to each other with like strands lining the intermolecular interface. In comparison, disordered and lyophilized peptide samples are randomly packed with both parallel and antiparallel alignments. The PG-1 aggregates show significant immobilization of the Phe ring near the beta-turn, further supporting the structural ordering. The intermolecular packing of PG-1 found in the solid state is consistent with its oligomerization in lipid bilayers. This solid-state aggregation approach may be useful for determining the quaternary structure of peptides in general and for gaining insights into the oligomerization of antimicrobial peptides in lipid bilayers in particular.  相似文献   

3.
Transmembrane and in-plane oriented peptides have been prepared by solid-phase peptide synthesis, labeled with 3,3,3-2H3-alanine and 15N-leucine at two selected sites, and reconstituted into oriented phophatidylcholine membranes. Thereafter, proton-decoupled 15N and 2H solid-state NMR spectroscopy at sample orientations of the membrane normal parallel to the magnetic field direction have been used to characterize the tilt and rotational pitch angle of these peptides in some detail. In a second step the samples have been tilted by 90 degrees . In this setup the spectral line shapes are sensitive indicators of the rate of rotational diffusion. Whereas monomeric transmembrane peptides exhibit spectral averaging and well-defined resonances, larger complexes are characterized by broad spectral line shapes. In particular the deuterium line shape is sensitive to association of a few transmembrane helices. In contrast, the formation of much larger complexes affects the 15N chemical shift spectrum. The spectra indicate that in liquid crystalline membranes an amphipathic peptide of 14 amino acids exhibits fast rotational diffusion on both the 2H and 15N time scales (>10(-5) s). Extending the sequences to 26 amino acids results in pronounced changes of the 2H solid-state NMR spectrum, whereas the signal intensities of 15N solid-state NMR spectra degrade. Below the phase transition temperature of the phospholipid bilayers, motional averaging on the time scale of the 2H solid-state NMR spectrum ceases for transmembrane and in-plane oriented peptides. Furthermore at temperatures close to the phase transition the total signal intensities of the deuterium solid-state NMR spectra strongly decrease.  相似文献   

4.
The influence of an antimicrobial peptide, protegrin-1 (PG-1), on the curvature and lateral diffusion coefficient (D(L)) of phosphocholine bilayers is investigated using one- (1D) and two-dimensional (2D) (31)P exchange NMR. The experiments utilize the fact that lipid lateral diffusion over the curved surface of vesicles changes the molecular orientation and thus the (31)P chemical shift anisotropy. This reorientation is manifested in 2D spectra as off-diagonal intensities and in 1D stimulated-echo experiments as reduced echo heights. The 2D spectra give information on the reorientation-angle distribution while the decay of the stimulated-echo intensity, which closely tracks the second-order correlation function in our experiments, yields the correlation times of the reorientation. The relationships among the 2D exchange spectra, stimulated-echo intensities, the correlation function, and reorientation-angle distributions are analyzed in detail. In the absence of PG-1, both dilaurylphosphotidylcholine (DLPC) and palmitoyloleoylphosphatidylcholine (POPC) vesicles show biexponential decays of the stimulated-echo intensities to equilibrium values of 0.20-0.25, suggesting that the curvature of the lipid vesicles has a bimodal distribution. The addition of PG-1 to DLPC vesicles increased the decay time constants, indicating that D(L) decreases due to peptide binding. In contrast, the addition of PG-1 to POPC vesicles decreased the decay constants by three to fivefold, indicating that the POPC vesicles are fragmented into smaller vesicles. On the basis of the changes in D(L) and the decay constants, we estimate that the radius of the POPC vesicles decreases by threefold due to PG-1 binding. Simulations of the 2D exchange spectra yielded quantitative reorientation-angle distributions that are consistent with the bimodal distributions of the vesicle curvature and the effects of the peptide on the two types of lipid bilayers. Thus, (31)P exchange NMR provides useful insights into the membrane morphological changes induced by this antimicrobial peptide.  相似文献   

5.
《Chemistry & biology》1996,3(7):543-550
Background: The protegrins are a family of arginine- and cysteine-rich cationic peptides found in porcine leukocytes that exhibit a broad range of antimicrobial and antiviral activities. They are composed of 16–18 amino-acid residues including four cysteines, which form two disulfide linkages. To begin to understand the mechanism of action of these peptides, we set out to determine the structure of protegrin-1 (PG-1).Results: We used two-dimensional homonuclear nuclear magnetic resonance spectroscopy to study the conformation of both natural and synthetic PG-1 under several conditions. A refined three-dimensional structure of synthetic PG-1 is presented.Conclusions: Both synthetic and natural protegrin-1 form a well-defined structure in solution composed primarily of a two-stranded antiparallel β sheet, with strands connected by a β turn. The structure of PG-1 suggests ways in which the peptide may interact with itself or other molecules to form the membrane pores and the large membrane-associated assemblages observed in protegrin-treated, gram-negative bacteria.  相似文献   

6.
Antimicrobial peptides (AMPs) selectively disrupt bacterial cell membranes to kill bacteria whereas they either do not or weakly interact with mammalian cells. The orientations of AMPs in lipid bilayers mimicking bacterial and mammalian cell membranes are related to their antimicrobial activity and selectivity. To understand the role of AMP-lipid interactions in the functional properties of AMPs better, we determined the membrane orientation of an AMP (MSI-78 or pexiganan) in various model membranes using sum frequency generation (SFG) vibrational spectroscopy. A solid-supported single 1,2-dipalmitoyl-an-glycero-3-[phospho-rac-(1-glycerol)] (DPPG) bilayer or 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPG) bilayer was used as a model bacterial cell membrane. A supported 1,2-dipalmitoyl-an-glycero-3-phosphocholine (DPPC) bilayer or a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer was used as a model mammalian cell membrane. Our SFG results indicate that the helical MSI-78 molecules are associated with the bilayer surface with ~70° deviation from the bilayer normal in the negatively charged gel-phase DPPG bilayer at 400 nM peptide concentration. However, when the concentration was increased to 600 nM, MSI-78 molecules changed their orientation to make a 25° tilt from the lipid bilayer normal whereas multiple orientations were observed for an even higher peptide concentration in agreement with toroidal-type pore formation as reported in a previous solid-state NMR study. In contrary, no interaction between MSI-78 and a zwitterionic DPPC bilayer was observed even at a much higher peptide concentration (~12,000 nM). These results demonstrate that SFG can provide insights into the antibacterial activity and selectivity of MSI-78. Interestingly, the peptide exhibits a concentration-dependent membrane orientation in the lamellar-phase POPG bilayer and was also found to induce toroidal-type pore formation. The deduced lipid flip-flop from SFG signals observed from lipids also supports MSI-78-induced toroidal-type pore formation.  相似文献   

7.
Cationic antimicrobial peptides (AMPs) are essential components of the innate immune system. They have attracted interest as novel compounds with the potential to treat infections associated with multi-drug resistant bacteria. In this study, we investigate piscidin 3 (P3), an AMP that was first discovered in the mast cells of hybrid striped bass. Prior studies showed that P3 is less active than its homolog piscidin 1 (P1) against planktonic bacteria. However, P3 has the advantage of being less toxic to mammalian cells and more active on biofilms and persister cells. Both P1 and P3 cross bacterial membranes and co-localize with intracellular DNA but P3 is more condensing to DNA while P1 is more membrane active. Recently, we showed that both peptides coordinate Cu2+ through an amino-terminal copper and nickel (ATCUN) motif. We also demonstrated that the bactericidal effects of P3 are linked to its ability to form radicals that nick DNA in the presence of Cu2+. Since metal binding and membrane crossing by P3 is biologically important, we apply in this study solid-state NMR spectroscopy to uniformly 13C-15N-labeled peptide samples to structurally characterize the ATCUN motif of P3 bound to bilayers and coordinated to Ni2+ and Cu2+. These experiments are supplemented with density functional theory calculations. Taken together, these studies refine the arrangement of not only the backbone but also side chain atoms of an AMP simultaneously bound to metal ions and phospholipid bilayers.  相似文献   

8.
Lipid bilayers were deposited inside the 0.2 microm pores of anodic aluminum oxide (AAO) filters by extrusion of multilamellar liposomes and their properties studied by 2H, 31P, and 1H solid-state NMR. Only the first bilayer adhered strongly to the inner surface of the pores. Additional layers were washed out easily by a flow of water as demonstrated by 1H magic angle spinning NMR experiments with addition of Pr3+ ions to shift accessible lipid headgroup resonances. A 13 mm diameter Anopore filter of 60 microm thickness oriented approximately 2.5 x 10(-7) mol of lipid as a single bilayer, corresponding to a total membrane area of about 500 cm2. The 2H NMR spectra of chain deuterated POPC are consistent with adsorption of wavy, tubular bilayers to the inner pore surface. By NMR diffusion experiments, we determined the average length of those lipid tubules to be approximately 0.4 microm. There is evidence for a thick water layer between lipid tubules and the pore surface. The ends of tubules are well sealed against the pore such that Pr3+ ions cannot penetrate into the water underneath the bilayers. We successfully trapped poly(ethylene glycol) (PEG) with a molecular weight of 8000 in this water layer. From the quantity of trapped PEG, we calculated an average water layer thickness of 3 nm. Lipid order parameters and motional properties are unperturbed by the solid support, in agreement with existence of a water layer. Such unperturbed, solid supported membranes are ideal for incorporation of membrane-spanning proteins with large intra- and extracellular domains. The experiments suggest the promise of such porous filters as membrane support in biosensors.  相似文献   

9.
While pore formation has been suggested as an important step in the membrane disruption process induced by antimicrobial peptides, membrane pore formation has never been directly visualized. We report on the dynamics of membrane disruption by antimicrobial peptide protegrin-1 (PG-1) on dimyristoyl-sn-glycero-phosphocholine-supported bilayer patches obtained via atomic force microscopy. The action of PG-1 is found to be concentration-dependent. At low PG-1 concentrations (1 < [PG-1] < 4 microg/mL), the peptide destabilizes the edge of the membrane to form fingerlike structures. At higher concentrations, PG-1 induces the formation of a sievelike nanoporous structure in the membrane. The highest degree of disruption is attained at concentrations >or=20 microg/mL, at which PG-1 disrupts the entire membrane, transforming it into stripelike structures with a well-defined and uniform stripe width. This first direct visualization of these membrane structural transformations helps elucidate the PG-1-induced membrane disruption mechanism.  相似文献   

10.
Deuterated water associated with oriented POPC bilayers was investigated before and after the addition of 2 mol% peptide. Membranes in the presences of antimicrobial-(LAH4), pore-forming- (the segments M2 of influenza A and S4 of the domain I of rat brain sodium channels) or lysine-containing model peptides (LAK1 and LAK3) were investigated by (2)H and proton-decoupled (31)P solid-state NMR. The NMR spectra were recorded as a function of hydration in the range between 15 and 93% relative humidity and of sample composition. In the presence of peptides an increased association of water is observed. A quantitative analysis suggests that the peptide-induced changes in the lipid bilayer packing have a significant effect on membrane-water association. The quadrupolar splittings of (2)H(2)O at a given degree of hydration indicate that the changes of the water deuterium order parameter are specific for the peptide sequence and the lipid composition.  相似文献   

11.
We conducted over 150 ns of simulation of a protegrin-1 octamer pore in a lipid bilayer composed of palmitoyloleoyl-phosphatidylethanolamine (POPE) and palmitoyloleoyl-phosphatidylglycerol (POPG) lipids mimicking the inner membrane of a bacterial cell. The simulations improve on a model of a pore proposed from recent NMR experiments and provide a coherent understanding of the molecular mechanism of antimicrobial activity. Although lipids tilt somewhat toward the peptides, the simulated protegrin-1 pore more closely follows the barrel-stave model than the toroidal-pore model. The movement of ions is investigated through the pore. The pore selectively allows negatively charged chloride ions to pass through at an average rate of one ion every two nanoseconds. Only two events are observed of sodium ions crossing through the pore. The potential of mean force is calculated for the water and both ion types. It is determined that the chloride ions move through the pore with ease, similarly to the water molecules with the exception of a zone of restricted movement midway through the pore. In bacteria, ions moving through the pore will compromise the integrity of the transmembrane potential. Without the transmembrane potential as a countermeasure, water will readily flow inside the higher osmolality cytoplasm. We determine that the diffusivity of water through a single PG-1 pore is sufficient to cause fast cell death by osmotic lysis.  相似文献   

12.
1H, 31P, and 7Li pulsed-gradient spin-echo (PGSE) diffusion and variable-temperature NMR results for THF solutions of the lithium and potassium salts derived from diphenylphosphino(o-cyanophenyl)aniline are reported and compared to the solid-state results obtained via X-ray diffraction studies. The solution results favor mononuclear salts, sometimes strongly ion paired, whereas the solid-state data reveal dinuclear species. The structures of the products from reactions of these salts with crown ethers are determined via PGSE and 1H Overhauser NMR methods.  相似文献   

13.
We have developed a solid-state NMR method for observing the signals due to 13C spins of a peptide in the close vicinity of 31P and 2H spins in deuterated phospholipid bilayers. The signal intensities in 13C high-resolution NMR spectra directly indicate the depolarization of 1H by 1H-31P and 1H-2H dipolar couplings under multiple-contact cross-polarization. This method was applied to a fully 13C-, 15N-labeled 14-residue peptide, mastoparan-X (MP-X), bound to phospholipid bilayers whose fatty acyl chains are deuterated. The 13C NMR spectra for the depolarization were simulated from the chemical shifts and structure of membrane-bound MP-X previously determined and the distribution of 2H and 31P spins in lipid bilayers. The minimization of RMSD between the simulated and the experimental spectra showed that the amphiphilic alpha-helix of MP-X was located in the interface between the water layer and the hydrophobic domain of the bilayer, with nonpolar residues facing the phosphorus atoms and alkyl chains of the lipids.  相似文献   

14.
Aggregation cascade for Alzheimer's amyloid-beta peptides, its relevance to neurotoxicity in the course of Alzheimer's disease and experimental methods useful for these studies are discussed. Details of the solid-phase peptide synthesis and sample preparation procedures for Alzheimer's beta-amyloid fibrils are given. Recent progress in obtaining structural constraints on Abeta-fibrils from solid-state NMR and scanning transmission electron microscopy (STEM) data is discussed. Polymorphism of amyloid fibrils and oligomers of the 'Arctic' mutant of Abeta(1-40) was studied by (1)H,(13)C solid-state NMR, transmission electron microscopy (TEM) and atomic force microscopy (AFM), and a real-time aggregation of different polymorphs of the peptide was observed with the aid of in situ AFM. Recent results on binding of Cu(II) ions and Al-citrate and Al-ATP complexes to amyloid fibrils, as studied by electron paramagnetic resonance (EPR) and solid-state (27)Al NMR techniques, are also presented.  相似文献   

15.
A novel solid-state NMR technique for identifying the asymmetric insertion depths of membrane proteins in lipid bilayers is introduced. By applying Mn (2+) ions on the outer but not the inner leaflet of lipid bilayers, the sidedness of protein residues in the lipid bilayer can be determined through paramagnetic relaxation enhancement (PRE) effects. Protein-free lipid membranes with one-side Mn (2+)-bound surfaces exhibit significant residual (31)P and lipid headgroup (13)C intensities, in contrast to two-side Mn (2+)-bound membranes, where lipid headgroup signals are mostly suppressed. Applying this method to a cell-penetrating peptide, penetratin, we found that at low peptide concentrations, penetratin is distributed in both leaflets of the bilayer, in contrast to the prediction of the electroporation model, which predicts that penetratin binds to only the outer lipid leaflet at low peptide concentrations to cause an electric field that drives subsequent peptide translocation. The invalidation of the electroporation model suggests an alternative mechanism for intracellular import of penetratin, which may involve guanidinium-phosphate complexation between the peptide and the lipids.  相似文献   

16.
Peptide‐induced pore formation in membranes can be dissected into two steps: pore formation and peptide binding to the pore. A computational method is proposed to study the second step in anionic membranes. The electrostatic potential is obtained from numerical solutions to the Poisson–Boltzmann equation and is then used in conjunction with IMM1 (implicit membrane model 1). A double charge layer model is used to incorporate the effects of the membrane dipole potential. Inhomogeneity of the charge density in the pore, characterized by explicit membrane simulations of toroidal pores, is included in the model. This approach was applied to two extensively studied peptides, magainin and melittin. In agreement with previous work, binding to toroidal pores is more favorable than binding to the flat membrane. The dependence of binding energy on anionic content exhibits different patterns for the two peptides, in correlation with the different lipid selectivity that has been observed experimentally. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
A novel hexasodium disphosphopentamolybdate hydrate, Na6[P2Mo5O23]x7H2O, has been identified using X-ray powder diffraction, 1H, 23Na, and 31P magic-angle spinning (MAS) NMR, and 23Na multiple-quantum (MQ) MAS NMR. Powder XRD reveals that the hydrate belongs to the triclinic spacegroup P1 with cell dimensions a = 10.090(3) A, b = 15.448(5) A, c = 8.460(4) A, alpha = 101.45(6) degrees, beta = 104.09(2) degrees, gamma = 90.71(5) degrees, and Z = 2. The number of water molecules of crystallization has been determined on the basis of a quantitative evaluation of the 1H MAS NMR spectrum, the crystallographic unit cell volume, and a hydrogen content analysis. The 23Na MQMAS NMR spectra of Na6[P2Mo5O23]x7H2O, obtained at three different magnetic fields, clearly resolve resonances from six different sodium sites and allow a determination of the second-order quadrupolar effect parameters and isotropic chemical shifts for the individual resonances. These data are used to determine the quadrupole coupling parameters (CQ and eta Q) from simulations of the complex line shapes of the central transitions, observed in 23Na MAS NMR spectra at the three magnetic fields. This analysis illustrates the advantages of combining MQMAS and MAS NMR at moderate and high magnetic fields for a precise determination of quadrupole coupling parameters and isotropic chemical shifts for multiple sodium sites in inorganic systems. 31P MAS NMR demonstrates the presence of two distinct P sites in the asymmetric unit of Na6[P2Mo5O23].7H2O while the 31P chemical shielding anisotropy parameters, determined for this hydrate and for Na6[P2Mo5O23]x13H2O, show that these two hydrates can easily be distinguished using 31P MAS NMR.  相似文献   

18.
We describe a two-dimensional solid-state NMR technique to investigate membrane protein topology under magic-angle spinning conditions. The experiment detects the rate of (1)H spin diffusion from the mobile lipids to the rigid protein. While spin diffusion within the rigid protein is fast, magnetization transfer in the mobile lipids is an inefficient and slow process. Qualitative analysis of (1)H spin-diffusion build-up curves from the lipid chain-end methyl groups to the protein allows the identification of membrane-embedded domains in the protein. Numerical simulations of spin-diffusion build-up curves yield the approximate insertion depth of protein segments in the membrane. The experiment is demonstrated on the selectively (13)C labeled colicin Ia channel domain, known to have a membrane-embedded domain, and on DNA/cationic lipid complexes where the DNA rods are bound to the membrane surface. The experiment is designed for X-nucleus detection, which could be (13)C or (15)N in the protein and (31)P for the DNA. Finally, we show that a qualitative distinction between membrane proteins with and without a membrane-embedded domain can be made even by using an unlabeled protein, by detection of lipid signals. This spin-diffusion experiment is simple to perform and requires no oriented bilayer preparations and only standard NMR hardware.  相似文献   

19.
The binding of two cationic europium complexes to a differentially phosphorylated insulin receptor peptide has been studied by emission spectroscopy and (31)P NMR and (1)H NMR TOCSY methods. Analysis of the europium emission and NMR spectral data was consistent with the presence of species in slow exchange on the NMR and emission timescales, in agreement with selective binding of the lanthanide ion to the phospho-tyrosine site, allowing such complexes to be considered as prototypical chemoselective paramagnetic derivatising agents.  相似文献   

20.
Solid-state 2H NMR spectroscopy was used to study and characterize the conformation and order of bolaform lipid membranes. A series of 2H-labeled bolaform phosphatidylcholines has been synthesized and their properties compared to a [D4]dimyristoylphosphatidylcholine (DMPC) and a [D8]-32 macrocyclic phosphatidylcholine. 31P NMR measurements establish that the aqueous dispersions of these lipids adopt lamellar phases. Computational dePakeing was used to extract the spectrum of the oriented system from spectra consisting of a superposition of randomly oriented domains in an unoriented sample. A large (> 90 %) and constant value for the normalized segmental order parameter (Smol) was observed for all positions along the diacyl chain of the bolaform lipids and only a small population (< 10%) of a less ordered conformer was observed. The less ordered conformer is assigned to the looping conformation on the basis of comparison with the deuterated macrocyclic phospholipid which has an enforced loop in its diacyl chain. The predominant population(> 90%) of the bolaform lipids is assigned to a highly ordered, spanning conformer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号