首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The significance of human cutaneous pigmentation lies in its protective role against sun-induced DNA damage and photocarcinogenesis. Fair skin and red hair are characterized by a low eumelanin to pheomelanin ratio, and have been associated with increased risk of skin cancer. Cutaneous pigmentation is a complex genetic trait, with more than 120 genes involved in its regulation, among which the melanocortin 1 receptor gene (MC1R) plays a key role. Although a large number of single nucleotide polymorphisms (SNPs) have been identified in pigmentation genes, very few SNPs have been examined in relation to human pigmentary phenotypes and skin cancer risk. Recent GWAS have identified new candidate determinants of pigmentation traits, but MC1R remains the best characterized genetic determinant of human skin and hair pigmentation as well as the more firmly validated low-penetrance skin cancer susceptibility gene. In this review, we will address how the melanocortin system regulates pigmentation, the effect of MC1R variants on the physiologic function of the MC1 receptor, and how specific MC1R variants are associated with distinct human pigmentation phenotypes.  相似文献   

2.
Skin pigmentation is due to the accumulation of two types of melanin granules in the keratinocytes. Besides being the most potent blocker of ultraviolet radiation, the role of melanin in photoprotection is complex. This is because one type of melanin called eumelanin is UV absorbent, whereas the other, pheomelanin, is photounstable and may even promote carcinogenesis. Skin hyperpigmentation may be caused by stress or exposure to sunlight, which stimulates the release of α‐melanocyte stimulating hormone (α‐MSH) from damaged keratinocytes. Melanocortin 1 receptor (MC1R) is a key signaling molecule on melanocytes that responds to α‐MSH by inducing expression of enzymes responsible for eumelanin synthesis. Persons with red hair have mutations in the MC1R causing its inactivation; this leads to a paucity of eumelanin production and makes red‐heads more susceptible to skin cancer. Apart from its effects on melanin production, the α‐MSH/MC1R signaling is also a potent anti‐inflammatory pathway and has been shown to promote antimelanoma immunity. This review will focus on the role of MC1R in terms of its regulation of melanogenesis and influence on the immune system with respect to skin cancer susceptibility.  相似文献   

3.
Malignant melanoma arises from epidermal melanocytes, the cells responsible for the production of the skin pigment melanin. The photoprotective role of melanin, which is transferred to neighboring keratinocytes, in UV-induced skin carcinogenesis, specifically in nonmelanoma skin cancers, has been well documented. Although melanocyte-resident melanin is expected to offer similar protection to melanocytes from UV-induced damage, UV radiation has long been suspected to have an etiologic role in cutaneous melanoma. However, nearly three decades of efforts using a variety of in vitro and in vivo models of human skin and mouse genetic models have produced conflicting data. Epidemiologic studies have also failed to establish a definitive association between UV exposure and risk of melanoma. In this review, we evaluate the dual role of the melanin pigment as a photoprotector as well as a photosensitizer and examine the evidence for association between melanin levels (constitutive and induced) and melanoma risk. We also discuss possible reasons for the lack of signature UV mutations in melanoma oncogenes known to date and potential alternative mechanisms to explain the role of UV in melanomagenesis.  相似文献   

4.
The melanocortin-1 receptor ( MC1R ) gene is known to play a major role in skin and hair pigmentation and to be highly polymorphic in Caucasians. This study was performed to investigate the relationships between MC1R gene polymorphisms and skin color in a large sample of French middle-aged Caucasian women. The codons 60 to 265 and the codon 294 of the MC1R gene were sequenced in 488 women. The skin color was measured on the inner side of the forearm using a spectrophotometric instrument. Fifteen variants were identified: Arg151Cys, Arg160Trp, Arg142His, Asp294His, Ile155Thr, Asp84Glu, Val60Leu, Val92Met, Arg163Gln, Ser83Pro, Thr95Met, Pro256Ser, Val265Ile, Ala166Ala and Gln233Gln. Women carrying Arg151Cys, Asp294His, Arg160Trp and Asp84Glu variants had a significantly higher reflectance in the red region, which indicates a lower level of functional melanin. This association was the most pronounced for women carrying Asp84Glu. In contrast, no significant difference was observed for other variants. Moreover, associations between MC1R polymorphisms and the risks of experiencing sunburn and of having freckles were found independently of skin color. Our findings support the hypothesis that MC1R polymorphisms do not necessarily alter the skin color but should sensitize the skin to UV-induced DNA damage.  相似文献   

5.
Melanocytes play a central role in the response of skin to sunlight exposure. They are directly involved in UV-induced pigmentation as a defense mechanism. However, their alteration can lead to melanoma, a process where the role of sun overexposure is highly probable. The transformation process whereby UV damage may result in melanoma initiation is poorly understood, especially in terms of UV-induced genotoxicity in pigmented cells, where melanin can act either as a sunscreen or as a photosensitizer. The aim of this study was to analyze the behavior of melanocytes from fair skin under irradiation mimicking environmental sunlight in terms of spectral power distribution. To do this, normal human Caucasian melanocytes in culture were exposed to simulated solar UV (SSUV, 300-400 nm). Even at relatively high doses (until 20 min exposure, corresponding to 12 kJ/m2 UV-B and 110 kJ/m2 UV-A), cell death was limited, as shown by cell viability and low occurrence of apoptosis (caspase-3 activation). Moreover, p53 accumulation was three times lower in melanocytes than in unpigmented cells such as fibroblasts after SSUV exposure. However, an important fraction of melanocyte population was arrested in G2-M phase, and this correlated well with a high induction level of the gene GADD45, 4 h after exposure. Among the genes involved in DNA repair, gene XPC was the most inducible because its expression increased more than two-fold 15 h after a 20 min exposure, whereas expression of P48 was only slightly increased. In addition, an early induction of Heme Oxygenase 1 (HO1) gene, a typical response to oxidative stress, was also observed for the first time in melanocytes. Interestingly, this induction remained significant when melanocytes were exposed to UV-A radiation only (320-400 nm), and stimulation of melanogenesis before irradiation further increased HO1 induction. These results were obtained with normal human cells after exposure to SSUV radiation, which mimicked natural sunlight. They provide new data related to gene expression and suggest that melanin in light skin could contribute to sunlight-induced genotoxicity and maybe to melanocyte transformation.  相似文献   

6.
Melanoma incidences are increasing rapidly, and ultraviolet (UV) radiation from the sun is believed to be its major contributing factor. UV exposure causes DNA damage in skin which may initiate cutaneous skin cancers including melanoma. Melanoma arises from melanocytes, the melanin‐producing skin cells, following genetic dysregulations resulting into hyperproliferative phenotype and neoplastic transformation. Both UVA and UVB exposures to the skin are believed to trigger melanocytic hyperplasia and melanomagenesis. Melanocytes by themselves are deficient in repair of oxidative DNA damage and UV‐induced photoproducts. Nicotinamide, an active form of vitamin B3 and a critical component of the human body's defense system has been shown to prevent certain cancers including nonmelanoma skin cancers. However, the mechanism of nicotinamide's protective effects is not well understood. Here, we investigated potential protective effects and mechanism of nicotinamide against UVA‐ and/or UVB‐ induced damage in normal human epidermal melanocytes. Our data demonstrated an appreciable protective effect of nicotinamide against UVA‐ and/or UVB‐ induced DNA damage in melanocytes by decreasing both cyclobutane pyrimidine dimers and 8‐hydroxy‐2′‐deoxyguanosine levels. We found that the photoprotective response of nicotinamide was associated with the activation of nucleotide excision repair genes and NRF2 signaling. Further studies are needed to validate our findings in in vivo models.  相似文献   

7.
Pigmentation of human skin is determined by the presence of melanin, the polymeric pigment that is produced in melanocytes and transferred to adjacent keratinocytes. Epidermal melanocytes produce two distinct types of melanin pigments: eumelanin, composed mainly of indole-type monomers, and pheomelanin that contains benzothiazine-type backbone. Eumelanin protects skin against UV-induced damages, whereas pheomelanin is believed to act as a potent UV photosensitizer and promote carcinogenesis. In this study, pyrolysis in combination with gas chromatography and mass spectrometry (Py-GC/MS) was applied for structural studies of the epidermal pigment isolated from the cultured human melanocytes. The analysis was preceded by investigations of DOPA-originated synthetic eumelanin and pheomelanin standards. This allowed determination of pyrolytic markers for both types of melanin pigments. To obtain additional information on the natural pigment structure, the samples were thermally degraded in the presence of tetramethylammonium hydroxide as the derivatizing agent. It was shown that the analyzed pigment from normal human epidermal melanocytes derived from moderately pigmented skin is of eumelanin type with little incorporation of a pheomelanin component. The results indicate that Py-GC/MS is a rapid and efficient technique for the differentiation of epidermal melanin types and may be an alternative to commonly used methods based on chemical degradation.  相似文献   

8.
Skin pigmentation enhancers.   总被引:3,自引:0,他引:3  
The highest incidences of cancer are found in the skin, but endogenous pigmentation is associated with markedly reduced risk. Agents that enhance skin pigmentation have the potential to reduce both photodamage and skin cancer incidence. The purpose of this review is to evaluate agents that have the potential to increase skin pigmentation. These include topically applied substances that simulate natural pigmentation: dihydroxyacetone and melanins; and substances that stimulate the natural pigmentation process: psoralens with UVA (PUVA), dimethylsulfoxide (DMSO), L-tyrosine, L-Dopa, lysosomotropic agents, diacylglycerols, thymidine dinucleotides, DNA fragments, melanocyte stimulating hormone (MSH) analogs, 3-isobutyl-1-methylxanthine (IBMX), nitric oxide donors, and bicyclic monoterpene (BMT) diols. These agents are compared with regards to efficacy when administered to melanoma cells, normal human epidermal melanocytes, animal skin, and human skin. In addition, mechanisms of action are reviewed since these may reveal issues related to both efficacy and safety. Both dihydroxyacetone and topically applied melanins are presently available to the consumer, and both of these have been shown to provide some photoprotection. Of the pigmentation stimulators, only PUVA and MSH analogs have been tested extensively on humans, but there are concerns about the safety and side effects of both. At least some of the remaining pigmentation stimulators under development have the potential to safely induce a photoprotective tan.  相似文献   

9.
10.
11.
alpha-Melanocyte-stimulating hormone (alpha-MSH) is an endogeneous linear tridecapeptide with potential application for the modulation of skin tanning. To evaluate the interest of introducing a lipid moiety onto this peptide, we developed an efficient chemoselective parallel method to prepare a large series of analogues of alpha-melanocortin with high purity, varying the nature or the relative position of the lipid moiety. Two sets of building blocks containing lipidic alpha-oxo-aldehydes or alpha-hydrazinoacetyl peptides were combined to obtain a 102-membered library of amphiphilic alpha-MSH analogues. This library was pharmacologically tested at 1 x 10(-7) M for the ability to induce AMPc production in M4Be melanoma cell line after stimulation of the human melanocortin MC1 receptor. Among theses lipopeptides, 84 compounds exhibited an AMPc induction higher than Melitane, a patented alpha-MSH agonist. These results provide strong evidence of the interest of introduction of a lipid tail for the pharmacomodulation of bioactive peptides.  相似文献   

12.
13.
A 1 m diameter water lens was used to focus solar radiation, giving an 8-fold concentration of the total spectrum and a cytocidal flux similar to that of laboratory UV sources. Survival curves for human melanoma cells were similar for sunlight and 254 nm UV, in that D q, was usually larger than D o. An xeroderma pigmentosum lymphoblastoid line was equally sensitive to both agents and human cell lines sensitive to ionizing radiation (lymphoblastoid lines), crosslinking agents or monofunctional alkylating agents (melanoma lines) had the same 254 nm UV and solar survival responses as appropriate control lines. Two melanoma sublines derived separately by 16 cycles of treatment with sunlight or 254 nm UV were crossresistant to both agents. In one melanoma cell line used for further studies, DNA strand breaks and DNA-protein crosslinking were induced in melanoma cells by sunlight but pyrimidine dimers (paper chromatography) and DNA interstrand crosslinking (alkaline elution) could not be detected. The solar fiuence response of DNA repair synthesis was much less than that from equitoxic 254 nm UV, reaching a maximum near the D o value and then declining; semiconservative DNA synthesis on the other hand remained high. These effects were not due to changes in thymidine pool sizes. Solar exposure did not have a major effect on 254 nm UV-induced repair synthesis.  相似文献   

14.
Abstract— Phospholipase A2 (PLA2) catalyzes the release of free fatty acids from membrane phospholipids, and its products derived from these fatty acids, such as prostaglandins and leukotrienes, significantly up-regulate the key mela-nogenic enzyme, tyrosinase, in melanocytes. This has led to suggestions that PLA2 itself triggers melanin synthesis in melanogenesis following UV irradiation or inflammation.
We have examined the effect of secretory PLA2 (sPLA2) on melanogenesis in cultured human melanocytes. Secretory PLA2 stimulated DNA synthesis and melanin synthesis, and these phenomena were completely inhibited by treatment with a phospholipase inhibitor, p- bromophenacyl bromide, demonstrating that the catalytic activity of sPLA2 is required for melanogenesis. Secretory PLA2 also stimulated tyrosinase activity, increased the amount of tyrosinase-related protein-1 and up-regulated the expression of both mRNA. These findings suggest that sPLA2 is an important mediator of UV-induced or postinflammatory pigmentation.  相似文献   

15.
Melanoma is the deadliest form of skin cancer because of its propensity to spread beyond the primary site of disease and because it resists many forms of treatment. Incidence of melanoma has been increasing for decades. Although ultraviolet radiation (UV) has been identified as the most important environmental causative factor for melanoma development, UV‐protective strategies have had limited efficacy in melanoma prevention. UV mutational burden correlates with melanoma development and tumor progression, underscoring the importance of UV in melanomagenesis. However, besides amount of UV exposure, melanocyte UV mutational load is influenced by the robustness of nucleotide excision repair, the genome maintenance pathway charged with removing UV photoproducts before they cause permanent mutations in the genome. In this review, we highlight the importance of the melanocortin hormonal signaling axis on regulating efficiency of nucleotide excision repair in melanocytes. By understanding the molecular mechanisms by which nucleotide excision repair can be increased, it may be possible to prevent many cases of melanoma by reducing UV mutational burden over time.  相似文献   

16.
Exposure to sunlight is responsible for most cutaneous malignant melanomas in the human population. It is very likely that DNA damage is an initial event in melanomagenesis, however, the role played by this damage is an open question. To this end, we used a hemipigmented F1 hybrid of the fish genus Xiphophorus and HPLC tandem mass spectrometry to examine the effects of melanin on the induction and repair of the predominant UV-induced photoproducts formed in skin cell DNA. We found that heavily pigmented skin cells had about half the damage of nonpigmented cells and the relative induction of the major photoproducts was independent of the degree of pigmentation. The efficiency of photoenzymatic repair was the same in nonpigmented and pigmented areas of the fish. We found no evidence of residual damage at 10 days after the last exposure. Most striking was that repeated exposure to multiple doses of UVB caused a very significant photoadaptive response. Rather than an accumulation of damage after five doses of UVB we saw a significant reduction in the amount of damage induced after the final dose compared with the initial dose. The relevance of these observations is discussed in the context of melanoma susceptibility and UVB thresholds.  相似文献   

17.
Abstract— A mutant cell line, DRP 287, sensitive to solar UV radiation and deficient in the repair of solar UV-induced nondimer DNA damage, was derived from ICR 2A frog cells. These cells were transfected with human DNA and a secondary transformant obtained in which normal solar UV sensitivity was restored and the repair defect corrected. The DNA from this secondary transformant was used to construct a genomic DNA library from which a recombinant phage was isolated containing the human gene capable of restoring normal solar UV sensitivity and correcting the repair defect in the DRP 287 cells. This represents the first human gene which has been isolated that is specifically involved in the repair of nondimer DNA damage induced by solar UV radiation. It has been designated SUVCC1 to denote solar UV cross-complementing gene number 1.  相似文献   

18.
There are two different types of ocular melanocytes and melanomas. Conjunctival melanocytes are located on the surface of the eye and are exposed to visible light and UV radiation. Recently, epidemiological studies demonstrated that sunlight plays a definite role in the occurrence of conjunctival melanoma, as it does in cutaneous melanoma. Uveal melanocytes consist of the iridal melanocytes, which are exposed to visible light and UV radiation; and the ciliary body melanocytes and choroidal melanocytes, which are not exposed to light radiation. Epidemiological studies demonstrated that sunlight may play a role in the occurrence of iridal melanoma, but may not be a major factor in the etiology of ciliary body and choroidal melanomas. Uveal melanocytes differ from epidermal melanocytes in that epidermal melanocytes respond to UV radiation and skin color becomes darker after exposure to sunlight; but uveal melanocytes do not respond to UV radiation and the iris color remains stable after exposure to sunlight. Recently, in vitro studies indicate that this phenomenon is determined both by cellular factors and environmental factors.  相似文献   

19.
Ultraviolet (UV) radiation, including both UVB and UVA irradiation, is the major risk factor for causing skin cancer including melanoma. Recently, we have shown that Sesn2, a member of the evolutionarily conserved stress‐inducible protein family Sestrins (Sesn), is upregulated in human melanomas as compared to melanocytes in normal human skin, suggesting an oncogenic role of Sesn2. However, the role of Sesn2 in UVB and UVA response is unknown. Here, we demonstrated that both UVB and UVA induce Sesn2 upregulation in melanocytes and melanoma cells. UVB induces Sesn2 expression through the p53 and AKT3 pathways. Sesn2 negatively regulates UVB‐induced DNA damage repair. In comparison, UVA induces Sesn2 upregulation through mitochondria but not Nrf2. Sesn2 ablation increased UVA‐induced Nrf2 induction and inhibits UVA‐induced ROS production, indicating that Sesn2 acts as an upstream regulator of Nrf2. These findings suggest previously unrecognized mechanisms in melanocyte response to UVB and UVA irradiation and potentially in melanoma formation.  相似文献   

20.
Adequate photoprotection is essential to control UV-related disorders, including sunburn, photoaging and photocarcinogenisis. Sun avoidance, protection of skin with clothing, and sunscreens are presently the best way of photoprotection, assuming that they are used properly. However, new strategies, which are based on or make use of the endogenous protective response to UV light, may further improve currently used photoprotective means. The addition of repair enzymes and/or antioxidants has a positive effect on skin's recovery from UV-induced DNA-damage. Several botanical agents, mainly vitamins and polyphenols, have shown to influence signal transduction pathways leading to photoprotective effects. Also stimulation of endogenous UV-response pathways via irradiation with a low UV dose or via simulation of UV-induced DNA-damage results in photoprotective effects. Future research in this field and combination of different photoprotective strategies will hopefully lead to improved photoprotection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号